mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 06:40:48 +08:00
Compare commits
6 Commits
195f7e8a97
...
14cb888002
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
14cb888002 | ||
|
|
ffa7a369ba | ||
|
|
3cd7b32f1b | ||
|
|
c0c9720d77 | ||
|
|
fc0cb10bcb | ||
|
|
b7d7cc1d49 |
2
.github/workflows/stable-release.yml
vendored
2
.github/workflows/stable-release.yml
vendored
@ -117,7 +117,7 @@ jobs:
|
|||||||
./python.exe get-pip.py
|
./python.exe get-pip.py
|
||||||
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
|
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
|
||||||
|
|
||||||
grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
|
grep comfy ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
|
||||||
./python.exe -s -m pip install -r requirements_comfyui.txt
|
./python.exe -s -m pip install -r requirements_comfyui.txt
|
||||||
rm requirements_comfyui.txt
|
rm requirements_comfyui.txt
|
||||||
|
|
||||||
|
|||||||
@ -427,12 +427,12 @@ def fp8_linear(self, input):
|
|||||||
input = torch.clamp(input, min=-448, max=448, out=input)
|
input = torch.clamp(input, min=-448, max=448, out=input)
|
||||||
input_fp8 = input.to(dtype).contiguous()
|
input_fp8 = input.to(dtype).contiguous()
|
||||||
layout_params_input = TensorCoreFP8Layout.Params(scale=scale_input, orig_dtype=input_dtype, orig_shape=tuple(input_fp8.shape))
|
layout_params_input = TensorCoreFP8Layout.Params(scale=scale_input, orig_dtype=input_dtype, orig_shape=tuple(input_fp8.shape))
|
||||||
quantized_input = QuantizedTensor(input_fp8, TensorCoreFP8Layout, layout_params_input)
|
quantized_input = QuantizedTensor(input_fp8, "TensorCoreFP8Layout", layout_params_input)
|
||||||
|
|
||||||
# Wrap weight in QuantizedTensor - this enables unified dispatch
|
# Wrap weight in QuantizedTensor - this enables unified dispatch
|
||||||
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
|
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
|
||||||
layout_params_weight = TensorCoreFP8Layout.Params(scale=scale_weight, orig_dtype=input_dtype, orig_shape=tuple(w.shape))
|
layout_params_weight = TensorCoreFP8Layout.Params(scale=scale_weight, orig_dtype=input_dtype, orig_shape=tuple(w.shape))
|
||||||
quantized_weight = QuantizedTensor(w, TensorCoreFP8Layout, layout_params_weight)
|
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
|
||||||
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
|
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
|
||||||
|
|
||||||
uncast_bias_weight(self, w, bias, offload_stream)
|
uncast_bias_weight(self, w, bias, offload_stream)
|
||||||
|
|||||||
@ -36,10 +36,10 @@ class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer):
|
|||||||
|
|
||||||
class Gemma3_12BModel(sd1_clip.SDClipModel):
|
class Gemma3_12BModel(sd1_clip.SDClipModel):
|
||||||
def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
||||||
llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None)
|
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
|
||||||
if llama_scaled_fp8 is not None:
|
if llama_quantization_metadata is not None:
|
||||||
model_options = model_options.copy()
|
model_options = model_options.copy()
|
||||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||||
|
|
||||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||||
|
|
||||||
@ -119,12 +119,12 @@ class LTXAVTEModel(torch.nn.Module):
|
|||||||
return self.load_state_dict(sdo, strict=False)
|
return self.load_state_dict(sdo, strict=False)
|
||||||
|
|
||||||
|
|
||||||
def ltxav_te(dtype_llama=None, llama_scaled_fp8=None):
|
def ltxav_te(dtype_llama=None, llama_quantization_metadata=None):
|
||||||
class LTXAVTEModel_(LTXAVTEModel):
|
class LTXAVTEModel_(LTXAVTEModel):
|
||||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||||
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
|
if llama_quantization_metadata is not None:
|
||||||
model_options = model_options.copy()
|
model_options = model_options.copy()
|
||||||
model_options["llama_scaled_fp8"] = llama_scaled_fp8
|
model_options["llama_quantization_metadata"] = llama_quantization_metadata
|
||||||
if dtype_llama is not None:
|
if dtype_llama is not None:
|
||||||
dtype = dtype_llama
|
dtype = dtype_llama
|
||||||
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
|
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
|
||||||
|
|||||||
@ -1,3 +1,3 @@
|
|||||||
# This file is automatically generated by the build process when version is
|
# This file is automatically generated by the build process when version is
|
||||||
# updated in pyproject.toml.
|
# updated in pyproject.toml.
|
||||||
__version__ = "0.7.0"
|
__version__ = "0.8.0"
|
||||||
|
|||||||
@ -1,6 +1,6 @@
|
|||||||
[project]
|
[project]
|
||||||
name = "ComfyUI"
|
name = "ComfyUI"
|
||||||
version = "0.7.0"
|
version = "0.8.0"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
license = { file = "LICENSE" }
|
license = { file = "LICENSE" }
|
||||||
requires-python = ">=3.10"
|
requires-python = ">=3.10"
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user