mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-16 01:37:04 +08:00
Compare commits
4 Commits
1e35b9d526
...
1d20fbc2b5
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1d20fbc2b5 | ||
|
|
6592bffc60 | ||
|
|
971cefe7d4 | ||
|
|
da2bfb5b0a |
@ -1557,10 +1557,13 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
|
||||
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5, solver_type="phi_1"):
|
||||
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
|
||||
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
|
||||
"""
|
||||
if solver_type not in {"phi_1", "phi_2"}:
|
||||
raise ValueError("solver_type must be 'phi_1' or 'phi_2'")
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
@ -1600,8 +1603,14 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
||||
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
|
||||
|
||||
# Step 2
|
||||
denoised_d = torch.lerp(denoised, denoised_2, fac)
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
|
||||
if solver_type == "phi_1":
|
||||
denoised_d = torch.lerp(denoised, denoised_2, fac)
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
|
||||
elif solver_type == "phi_2":
|
||||
b2 = ei_h_phi_2(-h_eta) / r
|
||||
b1 = ei_h_phi_1(-h_eta) - b2
|
||||
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b2 * denoised_2)
|
||||
|
||||
if inject_noise:
|
||||
segment_factor = (r - 1) * h * eta
|
||||
sde_noise = sde_noise * segment_factor.exp()
|
||||
|
||||
@ -41,6 +41,11 @@ class ZImage_Control(torch.nn.Module):
|
||||
ffn_dim_multiplier: float = (8.0 / 3.0),
|
||||
norm_eps: float = 1e-5,
|
||||
qk_norm: bool = True,
|
||||
n_control_layers=6,
|
||||
control_in_dim=16,
|
||||
additional_in_dim=0,
|
||||
broken=False,
|
||||
refiner_control=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
@ -49,10 +54,11 @@ class ZImage_Control(torch.nn.Module):
|
||||
super().__init__()
|
||||
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
||||
|
||||
self.additional_in_dim = 0
|
||||
self.control_in_dim = 16
|
||||
self.broken = broken
|
||||
self.additional_in_dim = additional_in_dim
|
||||
self.control_in_dim = control_in_dim
|
||||
n_refiner_layers = 2
|
||||
self.n_control_layers = 6
|
||||
self.n_control_layers = n_control_layers
|
||||
self.control_layers = nn.ModuleList(
|
||||
[
|
||||
ZImageControlTransformerBlock(
|
||||
@ -74,28 +80,49 @@ class ZImage_Control(torch.nn.Module):
|
||||
all_x_embedder = {}
|
||||
patch_size = 2
|
||||
f_patch_size = 1
|
||||
x_embedder = operations.Linear(f_patch_size * patch_size * patch_size * self.control_in_dim, dim, bias=True, device=device, dtype=dtype)
|
||||
x_embedder = operations.Linear(f_patch_size * patch_size * patch_size * (self.control_in_dim + self.additional_in_dim), dim, bias=True, device=device, dtype=dtype)
|
||||
all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder
|
||||
|
||||
self.refiner_control = refiner_control
|
||||
|
||||
self.control_all_x_embedder = nn.ModuleDict(all_x_embedder)
|
||||
self.control_noise_refiner = nn.ModuleList(
|
||||
[
|
||||
JointTransformerBlock(
|
||||
layer_id,
|
||||
dim,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
multiple_of,
|
||||
ffn_dim_multiplier,
|
||||
norm_eps,
|
||||
qk_norm,
|
||||
modulation=True,
|
||||
z_image_modulation=True,
|
||||
operation_settings=operation_settings,
|
||||
)
|
||||
for layer_id in range(n_refiner_layers)
|
||||
]
|
||||
)
|
||||
if self.refiner_control:
|
||||
self.control_noise_refiner = nn.ModuleList(
|
||||
[
|
||||
ZImageControlTransformerBlock(
|
||||
layer_id,
|
||||
dim,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
multiple_of,
|
||||
ffn_dim_multiplier,
|
||||
norm_eps,
|
||||
qk_norm,
|
||||
block_id=layer_id,
|
||||
operation_settings=operation_settings,
|
||||
)
|
||||
for layer_id in range(n_refiner_layers)
|
||||
]
|
||||
)
|
||||
else:
|
||||
self.control_noise_refiner = nn.ModuleList(
|
||||
[
|
||||
JointTransformerBlock(
|
||||
layer_id,
|
||||
dim,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
multiple_of,
|
||||
ffn_dim_multiplier,
|
||||
norm_eps,
|
||||
qk_norm,
|
||||
modulation=True,
|
||||
z_image_modulation=True,
|
||||
operation_settings=operation_settings,
|
||||
)
|
||||
for layer_id in range(n_refiner_layers)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, cap_feats, control_context, x_freqs_cis, adaln_input):
|
||||
patch_size = 2
|
||||
@ -105,9 +132,29 @@ class ZImage_Control(torch.nn.Module):
|
||||
control_context = self.control_all_x_embedder[f"{patch_size}-{f_patch_size}"](control_context.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2))
|
||||
|
||||
x_attn_mask = None
|
||||
for layer in self.control_noise_refiner:
|
||||
control_context = layer(control_context, x_attn_mask, x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input)
|
||||
if not self.refiner_control:
|
||||
for layer in self.control_noise_refiner:
|
||||
control_context = layer(control_context, x_attn_mask, x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input)
|
||||
|
||||
return control_context
|
||||
|
||||
def forward_noise_refiner_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input):
|
||||
if self.refiner_control:
|
||||
if self.broken:
|
||||
if layer_id == 0:
|
||||
return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
|
||||
if layer_id > 0:
|
||||
out = None
|
||||
for i in range(1, len(self.control_layers)):
|
||||
o, control_context = self.control_layers[i](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
|
||||
if out is None:
|
||||
out = o
|
||||
|
||||
return (out, control_context)
|
||||
else:
|
||||
return self.control_noise_refiner[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
|
||||
else:
|
||||
return (None, control_context)
|
||||
|
||||
def forward_control_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input):
|
||||
return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
|
||||
|
||||
@ -536,6 +536,7 @@ class NextDiT(nn.Module):
|
||||
bsz = len(x)
|
||||
pH = pW = self.patch_size
|
||||
device = x[0].device
|
||||
orig_x = x
|
||||
|
||||
if self.pad_tokens_multiple is not None:
|
||||
pad_extra = (-cap_feats.shape[1]) % self.pad_tokens_multiple
|
||||
@ -572,13 +573,21 @@ class NextDiT(nn.Module):
|
||||
|
||||
freqs_cis = self.rope_embedder(torch.cat((cap_pos_ids, x_pos_ids), dim=1)).movedim(1, 2)
|
||||
|
||||
patches = transformer_options.get("patches", {})
|
||||
|
||||
# refine context
|
||||
for layer in self.context_refiner:
|
||||
cap_feats = layer(cap_feats, cap_mask, freqs_cis[:, :cap_pos_ids.shape[1]], transformer_options=transformer_options)
|
||||
|
||||
padded_img_mask = None
|
||||
for layer in self.noise_refiner:
|
||||
x_input = x
|
||||
for i, layer in enumerate(self.noise_refiner):
|
||||
x = layer(x, padded_img_mask, freqs_cis[:, cap_pos_ids.shape[1]:], t, transformer_options=transformer_options)
|
||||
if "noise_refiner" in patches:
|
||||
for p in patches["noise_refiner"]:
|
||||
out = p({"img": x, "img_input": x_input, "txt": cap_feats, "pe": freqs_cis[:, cap_pos_ids.shape[1]:], "vec": t, "x": orig_x, "block_index": i, "transformer_options": transformer_options, "block_type": "noise_refiner"})
|
||||
if "img" in out:
|
||||
x = out["img"]
|
||||
|
||||
padded_full_embed = torch.cat((cap_feats, x), dim=1)
|
||||
mask = None
|
||||
@ -622,14 +631,15 @@ class NextDiT(nn.Module):
|
||||
|
||||
patches = transformer_options.get("patches", {})
|
||||
x_is_tensor = isinstance(x, torch.Tensor)
|
||||
img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options)
|
||||
img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, adaln_input, num_tokens, transformer_options=transformer_options)
|
||||
freqs_cis = freqs_cis.to(img.device)
|
||||
|
||||
img_input = img
|
||||
for i, layer in enumerate(self.layers):
|
||||
img = layer(img, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
|
||||
if "double_block" in patches:
|
||||
for p in patches["double_block"]:
|
||||
out = p({"img": img[:, cap_size[0]:], "txt": img[:, :cap_size[0]], "pe": freqs_cis[:, cap_size[0]:], "vec": adaln_input, "x": x, "block_index": i, "transformer_options": transformer_options})
|
||||
out = p({"img": img[:, cap_size[0]:], "img_input": img_input[:, cap_size[0]:], "txt": img[:, :cap_size[0]], "pe": freqs_cis[:, cap_size[0]:], "vec": adaln_input, "x": x, "block_index": i, "transformer_options": transformer_options})
|
||||
if "img" in out:
|
||||
img[:, cap_size[0]:] = out["img"]
|
||||
if "txt" in out:
|
||||
|
||||
@ -454,6 +454,9 @@ class ModelPatcher:
|
||||
def set_model_post_input_patch(self, patch):
|
||||
self.set_model_patch(patch, "post_input")
|
||||
|
||||
def set_model_noise_refiner_patch(self, patch):
|
||||
self.set_model_patch(patch, "noise_refiner")
|
||||
|
||||
def set_model_rope_options(self, scale_x, shift_x, scale_y, shift_y, scale_t, shift_t, **kwargs):
|
||||
rope_options = self.model_options["transformer_options"].get("rope_options", {})
|
||||
rope_options["scale_x"] = scale_x
|
||||
|
||||
@ -592,7 +592,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
|
||||
quant_conf = {"format": self.quant_format}
|
||||
if self._full_precision_mm:
|
||||
quant_conf["full_precision_matrix_mult"] = True
|
||||
sd["{}comfy_quant".format(prefix)] = torch.frombuffer(json.dumps(quant_conf).encode('utf-8'), dtype=torch.uint8)
|
||||
sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8)
|
||||
return sd
|
||||
|
||||
def _forward(self, input, weight, bias):
|
||||
|
||||
@ -1262,6 +1262,6 @@ def convert_old_quants(state_dict, model_prefix="", metadata={}):
|
||||
if quant_metadata is not None:
|
||||
layers = quant_metadata["layers"]
|
||||
for k, v in layers.items():
|
||||
state_dict["{}.comfy_quant".format(k)] = torch.frombuffer(json.dumps(v).encode('utf-8'), dtype=torch.uint8)
|
||||
state_dict["{}.comfy_quant".format(k)] = torch.tensor(list(json.dumps(v).encode('utf-8')), dtype=torch.uint8)
|
||||
|
||||
return state_dict, metadata
|
||||
|
||||
@ -659,6 +659,31 @@ class SamplerSASolver(io.ComfyNode):
|
||||
get_sampler = execute
|
||||
|
||||
|
||||
class SamplerSEEDS2(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="SamplerSEEDS2",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
inputs=[
|
||||
io.Combo.Input("solver_type", options=["phi_1", "phi_2"]),
|
||||
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="Stochastic strength"),
|
||||
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="SDE noise multiplier"),
|
||||
io.Float.Input("r", default=0.5, min=0.01, max=1.0, step=0.01, round=False, tooltip="Relative step size for the intermediate stage (c2 node)"),
|
||||
],
|
||||
outputs=[io.Sampler.Output()]
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, solver_type, eta, s_noise, r) -> io.NodeOutput:
|
||||
sampler_name = "seeds_2"
|
||||
sampler = comfy.samplers.ksampler(
|
||||
sampler_name,
|
||||
{"eta": eta, "s_noise": s_noise, "r": r, "solver_type": solver_type},
|
||||
)
|
||||
return io.NodeOutput(sampler)
|
||||
|
||||
|
||||
class Noise_EmptyNoise:
|
||||
def __init__(self):
|
||||
self.seed = 0
|
||||
@ -996,6 +1021,7 @@ class CustomSamplersExtension(ComfyExtension):
|
||||
SamplerDPMAdaptative,
|
||||
SamplerER_SDE,
|
||||
SamplerSASolver,
|
||||
SamplerSEEDS2,
|
||||
SplitSigmas,
|
||||
SplitSigmasDenoise,
|
||||
FlipSigmas,
|
||||
|
||||
@ -243,7 +243,13 @@ class ModelPatchLoader:
|
||||
model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
|
||||
elif 'control_all_x_embedder.2-1.weight' in sd: # alipai z image fun controlnet
|
||||
sd = z_image_convert(sd)
|
||||
model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
|
||||
config = {}
|
||||
if 'control_layers.14.adaLN_modulation.0.weight' in sd:
|
||||
config['n_control_layers'] = 15
|
||||
config['additional_in_dim'] = 17
|
||||
config['refiner_control'] = True
|
||||
config['broken'] = True
|
||||
model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast, **config)
|
||||
|
||||
model.load_state_dict(sd)
|
||||
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
|
||||
@ -297,56 +303,86 @@ class DiffSynthCnetPatch:
|
||||
return [self.model_patch]
|
||||
|
||||
class ZImageControlPatch:
|
||||
def __init__(self, model_patch, vae, image, strength):
|
||||
def __init__(self, model_patch, vae, image, strength, inpaint_image=None, mask=None):
|
||||
self.model_patch = model_patch
|
||||
self.vae = vae
|
||||
self.image = image
|
||||
self.inpaint_image = inpaint_image
|
||||
self.mask = mask
|
||||
self.strength = strength
|
||||
self.encoded_image = self.encode_latent_cond(image)
|
||||
self.encoded_image_size = (image.shape[1], image.shape[2])
|
||||
self.temp_data = None
|
||||
|
||||
def encode_latent_cond(self, image):
|
||||
latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(image))
|
||||
return latent_image
|
||||
def encode_latent_cond(self, control_image, inpaint_image=None):
|
||||
latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(control_image))
|
||||
if self.model_patch.model.additional_in_dim > 0:
|
||||
if self.mask is None:
|
||||
mask_ = torch.zeros_like(latent_image)[:, :1]
|
||||
else:
|
||||
mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none")
|
||||
if inpaint_image is None:
|
||||
inpaint_image = torch.ones_like(control_image) * 0.5
|
||||
|
||||
inpaint_image_latent = comfy.latent_formats.Flux().process_in(self.vae.encode(inpaint_image))
|
||||
|
||||
return torch.cat([latent_image, mask_, inpaint_image_latent], dim=1)
|
||||
else:
|
||||
return latent_image
|
||||
|
||||
def __call__(self, kwargs):
|
||||
x = kwargs.get("x")
|
||||
img = kwargs.get("img")
|
||||
img_input = kwargs.get("img_input")
|
||||
txt = kwargs.get("txt")
|
||||
pe = kwargs.get("pe")
|
||||
vec = kwargs.get("vec")
|
||||
block_index = kwargs.get("block_index")
|
||||
block_type = kwargs.get("block_type", "")
|
||||
spacial_compression = self.vae.spacial_compression_encode()
|
||||
if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression):
|
||||
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center")
|
||||
inpaint_scaled = None
|
||||
if self.inpaint_image is not None:
|
||||
inpaint_scaled = comfy.utils.common_upscale(self.inpaint_image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center").movedim(1, -1)
|
||||
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
|
||||
self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1))
|
||||
self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1), inpaint_scaled)
|
||||
self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1])
|
||||
comfy.model_management.load_models_gpu(loaded_models)
|
||||
|
||||
cnet_index = (block_index // 5)
|
||||
cnet_index_float = (block_index / 5)
|
||||
cnet_blocks = self.model_patch.model.n_control_layers
|
||||
div = round(30 / cnet_blocks)
|
||||
|
||||
cnet_index = (block_index // div)
|
||||
cnet_index_float = (block_index / div)
|
||||
|
||||
kwargs.pop("img") # we do ops in place
|
||||
kwargs.pop("txt")
|
||||
|
||||
cnet_blocks = self.model_patch.model.n_control_layers
|
||||
if cnet_index_float > (cnet_blocks - 1):
|
||||
self.temp_data = None
|
||||
return kwargs
|
||||
|
||||
if self.temp_data is None or self.temp_data[0] > cnet_index:
|
||||
self.temp_data = (-1, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec)))
|
||||
if block_type == "noise_refiner":
|
||||
self.temp_data = (-3, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec)))
|
||||
else:
|
||||
self.temp_data = (-1, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec)))
|
||||
|
||||
while self.temp_data[0] < cnet_index and (self.temp_data[0] + 1) < cnet_blocks:
|
||||
if block_type == "noise_refiner":
|
||||
next_layer = self.temp_data[0] + 1
|
||||
self.temp_data = (next_layer, self.model_patch.model.forward_control_block(next_layer, self.temp_data[1][1], img[:, :self.temp_data[1][1].shape[1]], None, pe, vec))
|
||||
self.temp_data = (next_layer, self.model_patch.model.forward_noise_refiner_block(block_index, self.temp_data[1][1], img_input[:, :self.temp_data[1][1].shape[1]], None, pe, vec))
|
||||
if self.temp_data[1][0] is not None:
|
||||
img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength)
|
||||
else:
|
||||
while self.temp_data[0] < cnet_index and (self.temp_data[0] + 1) < cnet_blocks:
|
||||
next_layer = self.temp_data[0] + 1
|
||||
self.temp_data = (next_layer, self.model_patch.model.forward_control_block(next_layer, self.temp_data[1][1], img_input[:, :self.temp_data[1][1].shape[1]], None, pe, vec))
|
||||
|
||||
if cnet_index_float == self.temp_data[0]:
|
||||
img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength)
|
||||
if cnet_blocks == self.temp_data[0] + 1:
|
||||
self.temp_data = None
|
||||
if cnet_index_float == self.temp_data[0]:
|
||||
img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength)
|
||||
if cnet_blocks == self.temp_data[0] + 1:
|
||||
self.temp_data = None
|
||||
|
||||
return kwargs
|
||||
|
||||
@ -386,7 +422,9 @@ class QwenImageDiffsynthControlnet:
|
||||
mask = 1.0 - mask
|
||||
|
||||
if isinstance(model_patch.model, comfy.ldm.lumina.controlnet.ZImage_Control):
|
||||
model_patched.set_model_double_block_patch(ZImageControlPatch(model_patch, vae, image, strength))
|
||||
patch = ZImageControlPatch(model_patch, vae, image, strength, mask=mask)
|
||||
model_patched.set_model_noise_refiner_patch(patch)
|
||||
model_patched.set_model_double_block_patch(patch)
|
||||
else:
|
||||
model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask))
|
||||
return (model_patched,)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user