Compare commits

...

6 Commits

Author SHA1 Message Date
Christian Byrne
b3c6f4b09d
Merge ff04757e40 into 873de5f37a 2026-01-31 20:38:06 -08:00
comfyanonymous
873de5f37a
KV cache implementation for using llama models for text generation. (#12195) 2026-01-31 21:11:11 -05:00
Jedrzej Kosinski
aa6f7a83bb
Send is_input_list on v1 and v3 schema to frontend (#12188)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
2026-01-31 20:05:11 -05:00
bymyself
ff04757e40 test: update tests to expect text as previewable media type
Some checks failed
Python Linting / Run Ruff (push) Has been cancelled
Python Linting / Run Pylint (push) Has been cancelled
Amp-Thread-ID: https://ampcode.com/threads/T-019c0be0-9fc6-71ac-853a-7c7cc846b375
Co-authored-by: Amp <amp@ampcode.com>
2026-01-30 00:09:08 -08:00
bymyself
2ada262e81 fix: resolve merge conflict with master
Amp-Thread-ID: https://ampcode.com/threads/T-019c0be0-9fc6-71ac-853a-7c7cc846b375
Co-authored-by: Amp <amp@ampcode.com>
2026-01-29 18:46:34 -08:00
bymyself
12f0c9ca45 feat: add text preview support to jobs API
Amp-Thread-ID: https://ampcode.com/threads/T-019c0be0-9fc6-71ac-853a-7c7cc846b375
Co-authored-by: Amp <amp@ampcode.com>
2026-01-29 14:41:01 -08:00
5 changed files with 112 additions and 21 deletions

View File

@ -1,7 +1,7 @@
import torch
import torch.nn as nn
from dataclasses import dataclass
from typing import Optional, Any
from typing import Optional, Any, Tuple
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
@ -32,6 +32,7 @@ class Llama2Config:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Mistral3Small24BConfig:
@ -54,6 +55,7 @@ class Mistral3Small24BConfig:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen25_3BConfig:
@ -76,6 +78,7 @@ class Qwen25_3BConfig:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_06BConfig:
@ -98,6 +101,7 @@ class Qwen3_06BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_4BConfig:
@ -120,6 +124,7 @@ class Qwen3_4BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_8BConfig:
@ -142,6 +147,7 @@ class Qwen3_8BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Ovis25_2BConfig:
@ -164,6 +170,7 @@ class Ovis25_2BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen25_7BVLI_Config:
@ -186,6 +193,7 @@ class Qwen25_7BVLI_Config:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Gemma2_2B_Config:
@ -209,6 +217,7 @@ class Gemma2_2B_Config:
sliding_attention = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Gemma3_4B_Config:
@ -232,6 +241,7 @@ class Gemma3_4B_Config:
sliding_attention = [1024, 1024, 1024, 1024, 1024, False]
rope_scale = [8.0, 1.0]
final_norm: bool = True
lm_head: bool = False
@dataclass
class Gemma3_12B_Config:
@ -255,6 +265,7 @@ class Gemma3_12B_Config:
sliding_attention = [1024, 1024, 1024, 1024, 1024, False]
rope_scale = [8.0, 1.0]
final_norm: bool = True
lm_head: bool = False
vision_config = {"num_channels": 3, "hidden_act": "gelu_pytorch_tanh", "hidden_size": 1152, "image_size": 896, "intermediate_size": 4304, "model_type": "siglip_vision_model", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14}
mm_tokens_per_image = 256
@ -356,6 +367,7 @@ class Attention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
batch_size, seq_length, _ = hidden_states.shape
xq = self.q_proj(hidden_states)
@ -373,11 +385,30 @@ class Attention(nn.Module):
xq, xk = apply_rope(xq, xk, freqs_cis=freqs_cis)
present_key_value = None
if past_key_value is not None:
index = 0
num_tokens = xk.shape[2]
if len(past_key_value) > 0:
past_key, past_value, index = past_key_value
if past_key.shape[2] >= (index + num_tokens):
past_key[:, :, index:index + xk.shape[2]] = xk
past_value[:, :, index:index + xv.shape[2]] = xv
xk = past_key[:, :, :index + xk.shape[2]]
xv = past_value[:, :, :index + xv.shape[2]]
present_key_value = (past_key, past_value, index + num_tokens)
else:
xk = torch.cat((past_key[:, :, :index], xk), dim=2)
xv = torch.cat((past_value[:, :, :index], xv), dim=2)
present_key_value = (xk, xv, index + num_tokens)
else:
present_key_value = (xk, xv, index + num_tokens)
xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
xv = xv.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
output = optimized_attention(xq, xk, xv, self.num_heads, mask=attention_mask, skip_reshape=True)
return self.o_proj(output)
return self.o_proj(output), present_key_value
class MLP(nn.Module):
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
@ -408,15 +439,17 @@ class TransformerBlock(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
# Self Attention
residual = x
x = self.input_layernorm(x)
x = self.self_attn(
x, present_key_value = self.self_attn(
hidden_states=x,
attention_mask=attention_mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
past_key_value=past_key_value,
)
x = residual + x
@ -426,7 +459,7 @@ class TransformerBlock(nn.Module):
x = self.mlp(x)
x = residual + x
return x
return x, present_key_value
class TransformerBlockGemma2(nn.Module):
def __init__(self, config: Llama2Config, index, device=None, dtype=None, ops: Any = None):
@ -451,6 +484,7 @@ class TransformerBlockGemma2(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
if self.transformer_type == 'gemma3':
if self.sliding_attention:
@ -468,11 +502,12 @@ class TransformerBlockGemma2(nn.Module):
# Self Attention
residual = x
x = self.input_layernorm(x)
x = self.self_attn(
x, present_key_value = self.self_attn(
hidden_states=x,
attention_mask=attention_mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
past_key_value=past_key_value,
)
x = self.post_attention_layernorm(x)
@ -485,7 +520,7 @@ class TransformerBlockGemma2(nn.Module):
x = self.post_feedforward_layernorm(x)
x = residual + x
return x
return x, present_key_value
class Llama2_(nn.Module):
def __init__(self, config, device=None, dtype=None, ops=None):
@ -516,9 +551,10 @@ class Llama2_(nn.Module):
else:
self.norm = None
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
if config.lm_head:
self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]):
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[], past_key_values=None):
if embeds is not None:
x = embeds
else:
@ -527,8 +563,13 @@ class Llama2_(nn.Module):
if self.normalize_in:
x *= self.config.hidden_size ** 0.5
seq_len = x.shape[1]
past_len = 0
if past_key_values is not None and len(past_key_values) > 0:
past_len = past_key_values[0][2]
if position_ids is None:
position_ids = torch.arange(0, x.shape[1], device=x.device).unsqueeze(0)
position_ids = torch.arange(past_len, past_len + seq_len, device=x.device).unsqueeze(0)
freqs_cis = precompute_freqs_cis(self.config.head_dim,
position_ids,
@ -539,14 +580,16 @@ class Llama2_(nn.Module):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, seq_len, attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
if mask is not None:
mask += causal_mask
else:
mask = causal_mask
if seq_len > 1:
causal_mask = torch.empty(past_len + seq_len, past_len + seq_len, dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
if mask is not None:
mask += causal_mask
else:
mask = causal_mask
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
intermediate = None
@ -562,16 +605,27 @@ class Llama2_(nn.Module):
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
next_key_values = []
for i, layer in enumerate(self.layers):
if all_intermediate is not None:
if only_layers is None or (i in only_layers):
all_intermediate.append(x.unsqueeze(1).clone())
x = layer(
past_kv = None
if past_key_values is not None:
past_kv = past_key_values[i] if len(past_key_values) > 0 else []
x, current_kv = layer(
x=x,
attention_mask=mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
past_key_value=past_kv,
)
if current_kv is not None:
next_key_values.append(current_kv)
if i == intermediate_output:
intermediate = x.clone()
@ -588,7 +642,10 @@ class Llama2_(nn.Module):
if intermediate is not None and final_layer_norm_intermediate and self.norm is not None:
intermediate = self.norm(intermediate)
return x, intermediate
if len(next_key_values) > 0:
return x, intermediate, next_key_values
else:
return x, intermediate
class Gemma3MultiModalProjector(torch.nn.Module):

View File

@ -1248,6 +1248,7 @@ class Hidden(str, Enum):
class NodeInfoV1:
input: dict=None
input_order: dict[str, list[str]]=None
is_input_list: bool=None
output: list[str]=None
output_is_list: list[bool]=None
output_name: list[str]=None
@ -1474,6 +1475,7 @@ class Schema:
info = NodeInfoV1(
input=input,
input_order={key: list(value.keys()) for (key, value) in input.items()},
is_input_list=self.is_input_list,
output=output,
output_is_list=output_is_list,
output_name=output_name,

View File

@ -20,11 +20,28 @@ class JobStatus:
# Media types that can be previewed in the frontend
PREVIEWABLE_MEDIA_TYPES = frozenset({'images', 'video', 'audio'})
PREVIEWABLE_MEDIA_TYPES = frozenset({'images', 'video', 'audio', 'text'})
# 3D file extensions for preview fallback (no dedicated media_type exists)
THREE_D_EXTENSIONS = frozenset({'.obj', '.fbx', '.gltf', '.glb'})
# Text preview truncation limit (1024 characters) to prevent preview_output bloat
TEXT_PREVIEW_MAX_LENGTH = 1024
def _create_text_preview(value: str) -> dict:
"""Create a text preview dict with optional truncation.
Returns:
dict with 'content' and optionally 'truncated' flag
"""
if len(value) <= TEXT_PREVIEW_MAX_LENGTH:
return {'content': value}
return {
'content': value[:TEXT_PREVIEW_MAX_LENGTH],
'truncated': True
}
def _extract_job_metadata(extra_data: dict) -> tuple[Optional[int], Optional[str]]:
"""Extract create_time and workflow_id from extra_data.
@ -174,6 +191,20 @@ def get_outputs_summary(outputs: dict) -> tuple[int, Optional[dict]]:
count += 1
if not isinstance(item, dict):
# Handle text outputs (non-dict items like strings or tuples)
if preview_output is None and media_type == 'text':
if isinstance(item, tuple):
text_value = item[0] if item else ''
else:
text_value = str(item)
text_preview = _create_text_preview(text_value)
enriched = {
**text_preview,
'nodeId': node_id,
'mediaType': media_type
}
if fallback_preview is None:
fallback_preview = enriched
continue
if preview_output is None and is_previewable(media_type, item):

View File

@ -656,6 +656,7 @@ class PromptServer():
info = {}
info['input'] = obj_class.INPUT_TYPES()
info['input_order'] = {key: list(value.keys()) for (key, value) in obj_class.INPUT_TYPES().items()}
info['is_input_list'] = getattr(obj_class, "INPUT_IS_LIST", False)
info['output'] = obj_class.RETURN_TYPES
info['output_is_list'] = obj_class.OUTPUT_IS_LIST if hasattr(obj_class, 'OUTPUT_IS_LIST') else [False] * len(obj_class.RETURN_TYPES)
info['output_name'] = obj_class.RETURN_NAMES if hasattr(obj_class, 'RETURN_NAMES') else info['output']

View File

@ -35,13 +35,13 @@ class TestIsPreviewable:
"""Unit tests for is_previewable()"""
def test_previewable_media_types(self):
"""Images, video, audio media types should be previewable."""
for media_type in ['images', 'video', 'audio']:
"""Images, video, audio, text media types should be previewable."""
for media_type in ['images', 'video', 'audio', 'text']:
assert is_previewable(media_type, {}) is True
def test_non_previewable_media_types(self):
"""Other media types should not be previewable."""
for media_type in ['latents', 'text', 'metadata', 'files']:
for media_type in ['latents', 'metadata', 'files']:
assert is_previewable(media_type, {}) is False
def test_3d_extensions_previewable(self):