mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-23 21:00:16 +08:00
Compare commits
6 Commits
2cee246aa1
...
07b9b080b9
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
07b9b080b9 | ||
|
|
b48d6a83d4 | ||
|
|
027042db68 | ||
|
|
1a20656448 | ||
|
|
0f11869d55 | ||
|
|
3e34344eeb |
@ -3,8 +3,8 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d
|
||||
from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm
|
||||
import model_management
|
||||
import model_patcher
|
||||
import comfy.model_management
|
||||
import comfy.model_patcher
|
||||
|
||||
class SRResidualCausalBlock3D(nn.Module):
|
||||
def __init__(self, channels: int):
|
||||
@ -103,13 +103,13 @@ UPSAMPLERS = {
|
||||
|
||||
class HunyuanVideo15SRModel():
|
||||
def __init__(self, model_type, config):
|
||||
self.load_device = model_management.vae_device()
|
||||
offload_device = model_management.vae_offload_device()
|
||||
self.dtype = model_management.vae_dtype(self.load_device)
|
||||
self.load_device = comfy.model_management.vae_device()
|
||||
offload_device = comfy.model_management.vae_offload_device()
|
||||
self.dtype = comfy.model_management.vae_dtype(self.load_device)
|
||||
self.model_class = UPSAMPLERS.get(model_type)
|
||||
self.model = self.model_class(**config).eval()
|
||||
|
||||
self.patcher = model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return self.model.load_state_dict(sd, strict=True)
|
||||
@ -118,5 +118,5 @@ class HunyuanVideo15SRModel():
|
||||
return self.model.state_dict()
|
||||
|
||||
def resample_latent(self, latent):
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
comfy.model_management.load_model_gpu(self.patcher)
|
||||
return self.model(latent.to(self.load_device))
|
||||
|
||||
@ -22,7 +22,6 @@ from enum import Enum
|
||||
from comfy.cli_args import args, PerformanceFeature
|
||||
import torch
|
||||
import sys
|
||||
import importlib
|
||||
import platform
|
||||
import weakref
|
||||
import gc
|
||||
@ -349,10 +348,22 @@ try:
|
||||
except:
|
||||
rocm_version = (6, -1)
|
||||
|
||||
def aotriton_supported(gpu_arch):
|
||||
path = torch.__path__[0]
|
||||
path = os.path.join(os.path.join(path, "lib"), "aotriton.images")
|
||||
gfx = set(map(lambda a: a[4:], filter(lambda a: a.startswith("amd-gfx"), os.listdir(path))))
|
||||
if gpu_arch in gfx:
|
||||
return True
|
||||
if "{}x".format(gpu_arch[:-1]) in gfx:
|
||||
return True
|
||||
if "{}xx".format(gpu_arch[:-2]) in gfx:
|
||||
return True
|
||||
return False
|
||||
|
||||
logging.info("AMD arch: {}".format(arch))
|
||||
logging.info("ROCm version: {}".format(rocm_version))
|
||||
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
if importlib.util.find_spec('triton') is not None: # AMD efficient attention implementation depends on triton. TODO: better way of detecting if it's compiled in or not.
|
||||
if aotriton_supported(arch): # AMD efficient attention implementation depends on aotriton.
|
||||
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
|
||||
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
|
||||
@ -399,6 +399,58 @@ class SplitAudioChannels(IO.ComfyNode):
|
||||
|
||||
separate = execute # TODO: remove
|
||||
|
||||
class JoinAudioChannels(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="JoinAudioChannels",
|
||||
display_name="Join Audio Channels",
|
||||
description="Joins left and right mono audio channels into a stereo audio.",
|
||||
category="audio",
|
||||
inputs=[
|
||||
IO.Audio.Input("audio_left"),
|
||||
IO.Audio.Input("audio_right"),
|
||||
],
|
||||
outputs=[
|
||||
IO.Audio.Output(display_name="audio"),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, audio_left, audio_right) -> IO.NodeOutput:
|
||||
waveform_left = audio_left["waveform"]
|
||||
sample_rate_left = audio_left["sample_rate"]
|
||||
waveform_right = audio_right["waveform"]
|
||||
sample_rate_right = audio_right["sample_rate"]
|
||||
|
||||
if waveform_left.shape[1] != 1 or waveform_right.shape[1] != 1:
|
||||
raise ValueError("AudioJoin: Both input audios must be mono.")
|
||||
|
||||
# Handle different sample rates by resampling to the higher rate
|
||||
waveform_left, waveform_right, output_sample_rate = match_audio_sample_rates(
|
||||
waveform_left, sample_rate_left, waveform_right, sample_rate_right
|
||||
)
|
||||
|
||||
# Handle different lengths by trimming to the shorter length
|
||||
length_left = waveform_left.shape[-1]
|
||||
length_right = waveform_right.shape[-1]
|
||||
|
||||
if length_left != length_right:
|
||||
min_length = min(length_left, length_right)
|
||||
if length_left > min_length:
|
||||
logging.info(f"JoinAudioChannels: Trimming left channel from {length_left} to {min_length} samples.")
|
||||
waveform_left = waveform_left[..., :min_length]
|
||||
if length_right > min_length:
|
||||
logging.info(f"JoinAudioChannels: Trimming right channel from {length_right} to {min_length} samples.")
|
||||
waveform_right = waveform_right[..., :min_length]
|
||||
|
||||
# Join the channels into stereo
|
||||
left_channel = waveform_left[..., 0:1, :]
|
||||
right_channel = waveform_right[..., 0:1, :]
|
||||
stereo_waveform = torch.cat([left_channel, right_channel], dim=1)
|
||||
|
||||
return IO.NodeOutput({"waveform": stereo_waveform, "sample_rate": output_sample_rate})
|
||||
|
||||
|
||||
def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2):
|
||||
if sample_rate_1 != sample_rate_2:
|
||||
@ -616,6 +668,7 @@ class AudioExtension(ComfyExtension):
|
||||
RecordAudio,
|
||||
TrimAudioDuration,
|
||||
SplitAudioChannels,
|
||||
JoinAudioChannels,
|
||||
AudioConcat,
|
||||
AudioMerge,
|
||||
AudioAdjustVolume,
|
||||
|
||||
@ -5,7 +5,7 @@ torch
|
||||
torchsde
|
||||
torchvision
|
||||
torchaudio
|
||||
numpy>=1.25.0
|
||||
numpy==2.2.6
|
||||
einops
|
||||
transformers>=4.50.3
|
||||
tokenizers>=0.13.3
|
||||
|
||||
@ -184,7 +184,7 @@ def create_block_external_middleware():
|
||||
else:
|
||||
response = await handler(request)
|
||||
|
||||
response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self'; frame-src 'self'; object-src 'self';"
|
||||
response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self' data:; frame-src 'self'; object-src 'self';"
|
||||
return response
|
||||
|
||||
return block_external_middleware
|
||||
|
||||
Loading…
Reference in New Issue
Block a user