Compare commits

...

10 Commits

Author SHA1 Message Date
Silver
2f1196a9c7
Merge f43e446709 into de9ada6a41 2026-02-02 23:40:38 +01:00
rattus
de9ada6a41
Dynamic VRAM unloading fix (#12227)
* mp: fix full dynamic unloading

This was not unloading dynamic models when requesting a full unload via
the unpatch() code path.

This was ok, i your workflow was all dynamic models but fails with big
VRAM leaks if you need to fully unload something for a regular ModelPatcher

It also fices the "unload models" button.

* mm: load models outside of Aimdo Mempool

In dynamic_vram mode, escape the Aimdo mempool and load into the regular
mempool. Use a dummy thread to do it.
2026-02-02 17:35:20 -05:00
rattus
37f711d4a1
mm: Fix cast buffers with intel offloading (#12229)
Intel has offloading support but there were some nvidia calls in the
new cast buffer stuff.
2026-02-02 17:34:46 -05:00
Silver
f43e446709
Merge branch 'comfyanonymous:master' into models-dir-arg 2025-12-19 15:23:15 +01:00
Silver
6ee2edde95
Merge branch 'comfyanonymous:master' into models-dir-arg 2025-12-13 07:19:39 +01:00
Silver
be3323cdec
Merge branch 'comfyanonymous:master' into models-dir-arg 2025-12-10 03:01:15 +01:00
Silver
0458e55a7a
Merge branch 'comfyanonymous:master' into models-dir-arg 2025-11-23 19:34:19 +01:00
Silver
9581882209
Merge branch 'comfyanonymous:master' into models-dir-arg 2025-11-18 10:46:36 +01:00
Silver
dc2c517694
Merge branch 'comfyanonymous:master' into models-dir-arg 2025-10-05 21:18:42 +02:00
silveroxides
0b27676fe1 add models-directory launch argument 2025-07-30 13:12:54 +02:00
4 changed files with 39 additions and 15 deletions

View File

@ -44,6 +44,7 @@ parser.add_argument("--max-upload-size", type=float, default=100, help="Set the
parser.add_argument("--base-directory", type=str, default=None, help="Set the ComfyUI base directory for models, custom_nodes, input, output, temp, and user directories.")
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
parser.add_argument("--models-directory", type=str, default=None, help="Set the ComfyUI models directory. Overrides --base-directory.")
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory. Overrides --base-directory.")
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory). Overrides --base-directory.")
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")

View File

@ -19,7 +19,8 @@
import psutil
import logging
from enum import Enum
from comfy.cli_args import args, PerformanceFeature
from comfy.cli_args import args, PerformanceFeature, enables_dynamic_vram
import threading
import torch
import sys
import platform
@ -650,7 +651,7 @@ def free_memory(memory_required, device, keep_loaded=[], for_dynamic=False, ram_
soft_empty_cache()
return unloaded_models
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
def load_models_gpu_orig(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
cleanup_models_gc()
global vram_state
@ -746,8 +747,25 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
current_loaded_models.insert(0, loaded_model)
return
def load_model_gpu(model):
return load_models_gpu([model])
def load_models_gpu_thread(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load):
with torch.inference_mode():
load_models_gpu_orig(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load)
soft_empty_cache()
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
#Deliberately load models outside of the Aimdo mempool so they can be retained accross
#nodes. Use a dummy thread to do it as pytorch documents that mempool contexts are
#thread local. So exploit that to escape context
if enables_dynamic_vram():
t = threading.Thread(
target=load_models_gpu_thread,
args=(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load)
)
t.start()
t.join()
else:
load_models_gpu_orig(models, memory_required=memory_required, force_patch_weights=force_patch_weights,
minimum_memory_required=minimum_memory_required, force_full_load=force_full_load)
def loaded_models(only_currently_used=False):
output = []
@ -1112,11 +1130,11 @@ def get_cast_buffer(offload_stream, device, size, ref):
return None
if cast_buffer is not None and cast_buffer.numel() > 50 * (1024 ** 2):
#I want my wrongly sized 50MB+ of VRAM back from the caching allocator right now
torch.cuda.synchronize()
synchronize()
del STREAM_CAST_BUFFERS[offload_stream]
del cast_buffer
#FIXME: This doesn't work in Aimdo because mempool cant clear cache
torch.cuda.empty_cache()
soft_empty_cache()
with wf_context:
cast_buffer = torch.empty((size), dtype=torch.int8, device=device)
STREAM_CAST_BUFFERS[offload_stream] = cast_buffer
@ -1132,9 +1150,7 @@ def reset_cast_buffers():
for offload_stream in STREAM_CAST_BUFFERS:
offload_stream.synchronize()
STREAM_CAST_BUFFERS.clear()
if comfy.memory_management.aimdo_allocator is None:
#Pytorch 2.7 and earlier crashes if you try and empty_cache when mempools exist
torch.cuda.empty_cache()
soft_empty_cache()
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
@ -1284,7 +1300,7 @@ def discard_cuda_async_error():
a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
_ = a + b
torch.cuda.synchronize()
synchronize()
except torch.AcceleratorError:
#Dump it! We already know about it from the synchronous return
pass
@ -1688,6 +1704,12 @@ def lora_compute_dtype(device):
LORA_COMPUTE_DTYPES[device] = dtype
return dtype
def synchronize():
if is_intel_xpu():
torch.xpu.synchronize()
elif torch.cuda.is_available():
torch.cuda.synchronize()
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:
@ -1713,9 +1735,6 @@ def debug_memory_summary():
return torch.cuda.memory.memory_summary()
return ""
#TODO: might be cleaner to put this somewhere else
import threading
class InterruptProcessingException(Exception):
pass

View File

@ -1597,7 +1597,7 @@ class ModelPatcherDynamic(ModelPatcher):
if unpatch_weights:
self.partially_unload_ram(1e32)
self.partially_unload(None)
self.partially_unload(None, 1e32)
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
assert not force_patch_weights #See above

View File

@ -19,7 +19,11 @@ if args.base_directory:
else:
base_path = os.path.dirname(os.path.realpath(__file__))
models_dir = os.path.join(base_path, "models")
if args.models_directory:
models_dir = os.path.abspath(args.models_directory)
else:
models_dir = os.path.join(base_path, "models")
folder_names_and_paths["checkpoints"] = ([os.path.join(models_dir, "checkpoints")], supported_pt_extensions)
folder_names_and_paths["configs"] = ([os.path.join(models_dir, "configs")], [".yaml"])