Compare commits

...

24 Commits

Author SHA1 Message Date
Sam Pullara
fb83448eee
Merge 019eaab4c9 into fcd9a236b0 2026-01-08 06:03:29 +03:00
ComfyUI Wiki
fcd9a236b0
Update template to 0.7.69 (#11719) 2026-01-07 18:22:23 -08:00
comfyanonymous
21e8425087
Add warning for old pytorch. (#11718) 2026-01-07 21:07:26 -05:00
rattus
b6c79a648a
ops: Fix offloading with FP8MM performance (#11697)
This logic was checking comfy_cast_weights, and going straight to
to the forward_comfy_cast_weights implementation without
attempting to downscale input to fp8 in the event comfy_cast_weights
is set.

The main reason comfy_cast_weights would be set would be for async
offload, which is not a good reason to nix FP8MM.

So instead, and together the underlying exclusions for FP8MM which
are:

* having a weight_function (usually LowVramPatch)
* force_cast_weights (compute dtype override)
* the weight is not Quantized
* the input is already quantized
* the model or layer has MM explictily disabled.

If you get past all of those exclusions, quantize the input tensor.
Then hand the new input, quantized or not off to
forward_comfy_cast_weights to handle it. If the weight is offloaded
but input is quantized you will get an offloaded MM8.
2026-01-07 21:01:16 -05:00
comfyanonymous
25bc1b5b57
Add memory estimation function to ltxav text encoder. (#11716) 2026-01-07 20:11:22 -05:00
comfyanonymous
3cd19e99c1
Increase ltxav mem estimation by a bit. (#11715) 2026-01-07 20:04:56 -05:00
comfyanonymous
007b87e7ac
Bump required comfy-kitchen version. (#11714) 2026-01-07 19:48:47 -05:00
comfyanonymous
34751fe9f9
Lower ltxv text encoder vram use. (#11713) 2026-01-07 19:12:15 -05:00
Jukka Seppänen
1c705f7bfb
Add device selection for LTXAVTextEncoderLoader (#11700) 2026-01-07 18:39:59 -05:00
rattus
48e5ea1dfd
model_patcher: Remove confusing load stat (#11710)
If the loader passes 1e32 as the usable memory size, it means force
the full load. This happens with CPU loads and a few other misc cases.
Removing the confusing number and just leave the other details.
2026-01-07 18:39:20 -05:00
comfyanonymous
3cd7b32f1b
Support gemma 12B with quant weights. (#11696)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Build package / Build Test (3.10) (push) Waiting to run
Build package / Build Test (3.11) (push) Waiting to run
Build package / Build Test (3.12) (push) Waiting to run
Build package / Build Test (3.13) (push) Waiting to run
Build package / Build Test (3.14) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
2026-01-07 05:15:14 -05:00
comfyanonymous
c0c9720d77
Fix stable release workflow not pulling latest comfy kitchen. (#11695) 2026-01-07 04:48:28 -05:00
Sam Pullara
019eaab4c9
Merge branch 'comfyanonymous:master' into master 2026-01-06 14:24:31 -08:00
Sam Pullara
f330220f66
Merge branch 'comfyanonymous:master' into master 2025-12-15 09:37:39 -08:00
Sam Pullara
d35e0fcdd7
Merge branch 'comfyanonymous:master' into master 2025-12-01 12:41:36 -08:00
Sam Pullara
3d0331813d
Merge branch 'comfyanonymous:master' into master 2025-11-26 15:18:24 -08:00
Sam Pullara
afd4b725db
Merge pull request #1 from spullara/claude/fix-download-file-extension-01KxyJS9CQduLtV75QhZiPsT
Fix file download issue - add attachment disposition type to Content-…
2025-11-19 16:46:45 -08:00
Claude
149506beea
Fix file download issue - add attachment disposition type to Content-Disposition headers
Files were downloading with filename "view" instead of the actual filename because
the Content-Disposition header was missing the disposition type (attachment/inline).
Changed from `filename="..."` to `attachment; filename="..."` in all 4 locations
in the /view endpoint to ensure proper filename handling by browsers.

This fixes downloads for videos, audio, and other file types served through the
/view endpoint.
2025-11-20 00:40:19 +00:00
Sam Pullara
dfca61be7f
Merge branch 'comfyanonymous:master' into master 2025-11-19 13:33:33 -08:00
Sam Pullara
39a5c5621e
Merge branch 'comfyanonymous:master' into master 2025-11-12 15:06:53 -08:00
Sam Pullara
0d20e44618
Merge branch 'comfyanonymous:master' into master 2025-10-31 13:41:24 -07:00
Sam Pullara
5f415089fc
Merge branch 'comfyanonymous:master' into master 2025-10-30 15:19:16 -07:00
Sam Pullara
6d23bfde7f add tests for saving json files formatted nicely 2025-10-29 13:26:49 -07:00
Sam Pullara
0eff10fd21 store json files pretty printed for better source control compatibiility 2025-10-29 13:17:56 -07:00
12 changed files with 146 additions and 38 deletions

View File

@ -117,7 +117,7 @@ jobs:
./python.exe get-pip.py
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
grep comfy ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
./python.exe -s -m pip install -r requirements_comfyui.txt
rm requirements_comfyui.txt

View File

@ -377,8 +377,22 @@ class UserManager():
try:
body = await request.read()
with open(path, "wb") as f:
f.write(body)
# Pretty print JSON files for better source control
if path.lower().endswith('.json'):
try:
# Parse JSON and re-serialize with indentation
json_data = json.loads(body.decode('utf-8'))
formatted_json = json.dumps(json_data, indent=2)
with open(path, "w", encoding='utf-8') as f:
f.write(formatted_json)
except (json.JSONDecodeError, UnicodeDecodeError):
# If JSON parsing fails, save as-is
with open(path, "wb") as f:
f.write(body)
else:
# Non-JSON files are saved as-is
with open(path, "wb") as f:
f.write(body)
except OSError as e:
logging.warning(f"Error saving file '{path}': {e}")
return web.Response(

View File

@ -718,6 +718,7 @@ class ModelPatcher:
continue
cast_weight = self.force_cast_weights
m.comfy_force_cast_weights = self.force_cast_weights
if lowvram_weight:
if hasattr(m, "comfy_cast_weights"):
m.weight_function = []
@ -790,11 +791,12 @@ class ModelPatcher:
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
usable_stat = "{:.2f} MB usable,".format(lowvram_model_memory / (1024 * 1024)) if lowvram_model_memory < 1e32 else ""
if lowvram_counter > 0:
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
logging.info("loaded partially; {} {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(usable_stat, mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
self.model.model_lowvram = True
else:
logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
logging.info("loaded completely; {} {:.2f} MB loaded, full load: {}".format(usable_stat, mem_counter / (1024 * 1024), full_load))
self.model.model_lowvram = False
if full_load:
self.model.to(device_to)

View File

@ -654,29 +654,29 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
run_every_op()
input_shape = input.shape
tensor_3d = input.ndim == 3
if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(input, *args, **kwargs)
reshaped_3d = False
if (getattr(self, 'layout_type', None) is not None and
not isinstance(input, QuantizedTensor)):
not isinstance(input, QuantizedTensor) and not self._full_precision_mm and
not getattr(self, 'comfy_force_cast_weights', False) and
len(self.weight_function) == 0 and len(self.bias_function) == 0):
# Reshape 3D tensors to 2D for quantization (needed for NVFP4 and others)
if tensor_3d:
input = input.reshape(-1, input_shape[2])
input_reshaped = input.reshape(-1, input_shape[2]) if input.ndim == 3 else input
if input.ndim != 2:
# Fall back to comfy_cast_weights for non-2D tensors
return self.forward_comfy_cast_weights(input.reshape(input_shape), *args, **kwargs)
# Fall back to non-quantized for non-2D tensors
if input_reshaped.ndim == 2:
reshaped_3d = input.ndim == 3
# dtype is now implicit in the layout class
scale = getattr(self, 'input_scale', None)
if scale is not None:
scale = comfy.model_management.cast_to_device(scale, input.device, None)
input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale)
# dtype is now implicit in the layout class
input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None))
output = self._forward(input, self.weight, self.bias)
output = self.forward_comfy_cast_weights(input)
# Reshape output back to 3D if input was 3D
if tensor_3d:
if reshaped_3d:
output = output.reshape((input_shape[0], input_shape[1], self.weight.shape[0]))
return output

View File

@ -19,6 +19,7 @@ try:
cuda_version = tuple(map(int, str(torch.version.cuda).split('.')))
if cuda_version < (13,):
ck.registry.disable("cuda")
logging.warning("WARNING: You need pytorch with cu130 or higher to use optimized CUDA operations.")
ck.registry.disable("triton")
for k, v in ck.list_backends().items():

View File

@ -218,7 +218,7 @@ class CLIP:
if unprojected:
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model()
self.load_model(tokens)
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
all_hooks.reset()
self.patcher.patch_hooks(None)
@ -266,7 +266,7 @@ class CLIP:
if return_pooled == "unprojected":
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model()
self.load_model(tokens)
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
o = self.cond_stage_model.encode_token_weights(tokens)
cond, pooled = o[:2]
@ -299,8 +299,11 @@ class CLIP:
sd_clip[k] = sd_tokenizer[k]
return sd_clip
def load_model(self):
model_management.load_model_gpu(self.patcher)
def load_model(self, tokens={}):
memory_used = 0
if hasattr(self.cond_stage_model, "memory_estimation_function"):
memory_used = self.cond_stage_model.memory_estimation_function(tokens, device=self.patcher.load_device)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
return self.patcher
def get_key_patches(self):

View File

@ -845,7 +845,7 @@ class LTXAV(LTXV):
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = 0.055 # TODO
self.memory_usage_factor = 0.061 # TODO
def get_model(self, state_dict, prefix="", device=None):
out = model_base.LTXAV(self, device=device)

View File

@ -36,10 +36,10 @@ class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer):
class Gemma3_12BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None)
if llama_scaled_fp8 is not None:
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
@ -98,10 +98,13 @@ class LTXAVTEModel(torch.nn.Module):
out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs)
out_device = out.device
if comfy.model_management.should_use_bf16(self.execution_device):
out = out.to(device=self.execution_device, dtype=torch.bfloat16)
out = out.movedim(1, -1).to(self.execution_device)
out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6)
out = out.reshape((out.shape[0], out.shape[1], -1))
out = self.text_embedding_projection(out)
out = out.float()
out_vid = self.video_embeddings_connector(out)[0]
out_audio = self.audio_embeddings_connector(out)[0]
out = torch.concat((out_vid, out_audio), dim=-1)
@ -118,13 +121,21 @@ class LTXAVTEModel(torch.nn.Module):
return self.load_state_dict(sdo, strict=False)
def memory_estimation_function(self, token_weight_pairs, device=None):
constant = 6.0
if comfy.model_management.should_use_bf16(device):
constant /= 2.0
def ltxav_te(dtype_llama=None, llama_scaled_fp8=None):
token_weight_pairs = token_weight_pairs.get("gemma3_12b", [])
num_tokens = sum(map(lambda a: len(a), token_weight_pairs))
return num_tokens * constant * 1024 * 1024
def ltxav_te(dtype_llama=None, llama_quantization_metadata=None):
class LTXAVTEModel_(LTXAVTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
model_options["llama_quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)

View File

@ -185,6 +185,10 @@ class LTXAVTextEncoderLoader(io.ComfyNode):
io.Combo.Input(
"ckpt_name",
options=folder_paths.get_filename_list("checkpoints"),
),
io.Combo.Input(
"device",
options=["default", "cpu"],
)
],
outputs=[io.Clip.Output()],
@ -197,7 +201,11 @@ class LTXAVTextEncoderLoader(io.ComfyNode):
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder)
clip_path2 = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
model_options = {}
if device == "cpu":
model_options["load_device"] = model_options["offload_device"] = torch.device("cpu")
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options)
return io.NodeOutput(clip)

View File

@ -1,5 +1,5 @@
comfyui-frontend-package==1.35.9
comfyui-workflow-templates==0.7.67
comfyui-workflow-templates==0.7.69
comfyui-embedded-docs==0.3.1
torch
torchsde
@ -21,7 +21,7 @@ psutil
alembic
SQLAlchemy
av>=14.2.0
comfy-kitchen>=0.2.3
comfy-kitchen>=0.2.5
#non essential dependencies:
kornia>=0.7.1

View File

@ -518,7 +518,7 @@ class PromptServer():
buffer.seek(0)
return web.Response(body=buffer.read(), content_type=f'image/{image_format}',
headers={"Content-Disposition": f"filename=\"{filename}\""})
headers={"Content-Disposition": f"attachment; filename=\"{filename}\""})
if 'channel' not in request.rel_url.query:
channel = 'rgba'
@ -538,7 +538,7 @@ class PromptServer():
buffer.seek(0)
return web.Response(body=buffer.read(), content_type='image/png',
headers={"Content-Disposition": f"filename=\"{filename}\""})
headers={"Content-Disposition": f"attachment; filename=\"{filename}\""})
elif channel == 'a':
with Image.open(file) as img:
@ -555,7 +555,7 @@ class PromptServer():
alpha_buffer.seek(0)
return web.Response(body=alpha_buffer.read(), content_type='image/png',
headers={"Content-Disposition": f"filename=\"{filename}\""})
headers={"Content-Disposition": f"attachment; filename=\"{filename}\""})
else:
# Get content type from mimetype, defaulting to 'application/octet-stream'
content_type = mimetypes.guess_type(filename)[0] or 'application/octet-stream'
@ -567,7 +567,7 @@ class PromptServer():
return web.FileResponse(
file,
headers={
"Content-Disposition": f"filename=\"{filename}\"",
"Content-Disposition": f"attachment; filename=\"{filename}\"",
"Content-Type": content_type
}
)

View File

@ -287,3 +287,72 @@ async def test_listuserdata_v2_url_encoded_path(aiohttp_client, app, tmp_path):
assert entry["name"] == "file.txt"
# Ensure the path is correctly decoded and uses forward slash
assert entry["path"] == "my dir/file.txt"
async def test_post_userdata_json_pretty_print(aiohttp_client, app, tmp_path):
"""Test that JSON files are saved with pretty printing (indentation)"""
import json
client = await aiohttp_client(app)
# Create a compact JSON workflow
workflow_data = {
"nodes": [
{"id": "1", "type": "LoadImage", "inputs": {"image": "test.png"}},
{"id": "2", "type": "SaveImage", "inputs": {"images": ["1", 0]}}
],
"metadata": {"version": "1.0", "author": "test"}
}
compact_json = json.dumps(workflow_data).encode('utf-8')
# Save as JSON file
resp = await client.post("/userdata/workflow.json", data=compact_json)
assert resp.status == 200
# Read the saved file and verify it's pretty-printed
with open(tmp_path / "workflow.json", "r", encoding='utf-8') as f:
saved_content = f.read()
# Verify the file contains indentation (pretty-printed)
assert " " in saved_content # Should have 2-space indentation
assert "\n" in saved_content # Should have newlines
# Verify the content is still valid JSON and matches original data
saved_data = json.loads(saved_content)
assert saved_data == workflow_data
# Verify it's actually formatted (not compact)
# Compact JSON would be much shorter
assert len(saved_content) > len(compact_json)
async def test_post_userdata_json_invalid_fallback(aiohttp_client, app, tmp_path):
"""Test that invalid JSON is saved as-is without error"""
client = await aiohttp_client(app)
# Create invalid JSON content
invalid_json = b'{"invalid": json content}'
# Save as JSON file - should not fail
resp = await client.post("/userdata/invalid.json", data=invalid_json)
assert resp.status == 200
# Verify file was saved as-is
with open(tmp_path / "invalid.json", "rb") as f:
assert f.read() == invalid_json
async def test_post_userdata_non_json_unchanged(aiohttp_client, app, tmp_path):
"""Test that non-JSON files are saved unchanged"""
client = await aiohttp_client(app)
# Create binary content
binary_content = b'\x00\x01\x02\x03\x04\x05'
# Save as non-JSON file
resp = await client.post("/userdata/test.bin", data=binary_content)
assert resp.status == 200
# Verify file was saved exactly as-is
with open(tmp_path / "test.bin", "rb") as f:
assert f.read() == binary_content