mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-26 14:20:27 +08:00
Compare commits
11 Commits
5d5447ab22
...
fed84ab18c
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
fed84ab18c | ||
|
|
76eb8f26af | ||
|
|
fc0cb10bcb | ||
|
|
b7d7cc1d49 | ||
|
|
79e94544bd | ||
|
|
ce0000c4f2 | ||
|
|
c5cfb34c07 | ||
|
|
edee33f55e | ||
|
|
2c03884f5f | ||
|
|
d23a9633d9 | ||
|
|
1bb97c480d |
2
.github/workflows/test-ci.yml
vendored
2
.github/workflows/test-ci.yml
vendored
@ -20,6 +20,7 @@ jobs:
|
||||
test-stable:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
max-parallel: 1 # This forces sequential execution
|
||||
matrix:
|
||||
# os: [macos, linux, windows]
|
||||
# os: [macos, linux]
|
||||
@ -74,6 +75,7 @@ jobs:
|
||||
test-unix-nightly:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
max-parallel: 1 # This forces sequential execution
|
||||
matrix:
|
||||
# os: [macos, linux]
|
||||
os: [linux]
|
||||
|
||||
@ -1504,6 +1504,16 @@ def supports_fp8_compute(device=None):
|
||||
|
||||
return True
|
||||
|
||||
def supports_nvfp4_compute(device=None):
|
||||
if not is_nvidia():
|
||||
return False
|
||||
|
||||
props = torch.cuda.get_device_properties(device)
|
||||
if props.major < 10:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def extended_fp16_support():
|
||||
# TODO: check why some models work with fp16 on newer torch versions but not on older
|
||||
if torch_version_numeric < (2, 7):
|
||||
|
||||
25
comfy/ops.py
25
comfy/ops.py
@ -427,12 +427,12 @@ def fp8_linear(self, input):
|
||||
input = torch.clamp(input, min=-448, max=448, out=input)
|
||||
input_fp8 = input.to(dtype).contiguous()
|
||||
layout_params_input = TensorCoreFP8Layout.Params(scale=scale_input, orig_dtype=input_dtype, orig_shape=tuple(input_fp8.shape))
|
||||
quantized_input = QuantizedTensor(input_fp8, TensorCoreFP8Layout, layout_params_input)
|
||||
quantized_input = QuantizedTensor(input_fp8, "TensorCoreFP8Layout", layout_params_input)
|
||||
|
||||
# Wrap weight in QuantizedTensor - this enables unified dispatch
|
||||
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
|
||||
layout_params_weight = TensorCoreFP8Layout.Params(scale=scale_weight, orig_dtype=input_dtype, orig_shape=tuple(w.shape))
|
||||
quantized_weight = QuantizedTensor(w, TensorCoreFP8Layout, layout_params_weight)
|
||||
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
|
||||
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
|
||||
|
||||
uncast_bias_weight(self, w, bias, offload_stream)
|
||||
@ -493,11 +493,12 @@ from .quant_ops import (
|
||||
)
|
||||
|
||||
|
||||
def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False):
|
||||
def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False, disabled=[]):
|
||||
class MixedPrecisionOps(manual_cast):
|
||||
_quant_config = quant_config
|
||||
_compute_dtype = compute_dtype
|
||||
_full_precision_mm = full_precision_mm
|
||||
_disabled = disabled
|
||||
|
||||
class Linear(torch.nn.Module, CastWeightBiasOp):
|
||||
def __init__(
|
||||
@ -522,6 +523,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
|
||||
|
||||
self.tensor_class = None
|
||||
self._full_precision_mm = MixedPrecisionOps._full_precision_mm
|
||||
self._full_precision_mm_config = False
|
||||
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
@ -556,8 +558,12 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
|
||||
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False)
|
||||
else:
|
||||
self.quant_format = layer_conf.get("format", None)
|
||||
self._full_precision_mm_config = layer_conf.get("full_precision_matrix_mult", False)
|
||||
if not self._full_precision_mm:
|
||||
self._full_precision_mm = layer_conf.get("full_precision_matrix_mult", False)
|
||||
self._full_precision_mm = self._full_precision_mm_config
|
||||
|
||||
if self.quant_format in MixedPrecisionOps._disabled:
|
||||
self._full_precision_mm = True
|
||||
|
||||
if self.quant_format is None:
|
||||
raise ValueError(f"Unknown quantization format for layer {layer_name}")
|
||||
@ -630,7 +636,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
|
||||
sd["{}weight_scale".format(prefix)] = self.weight._params.block_scale
|
||||
|
||||
quant_conf = {"format": self.quant_format}
|
||||
if self._full_precision_mm:
|
||||
if self._full_precision_mm_config:
|
||||
quant_conf["full_precision_matrix_mult"] = True
|
||||
sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8)
|
||||
return sd
|
||||
@ -711,10 +717,17 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
|
||||
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, model_config=None):
|
||||
fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular
|
||||
nvfp4_compute = comfy.model_management.supports_nvfp4_compute(load_device)
|
||||
|
||||
if model_config and hasattr(model_config, 'quant_config') and model_config.quant_config:
|
||||
logging.info("Using mixed precision operations")
|
||||
return mixed_precision_ops(model_config.quant_config, compute_dtype, full_precision_mm=not fp8_compute)
|
||||
disabled = set()
|
||||
if not nvfp4_compute:
|
||||
disabled.add("nvfp4")
|
||||
if not fp8_compute:
|
||||
disabled.add("float8_e4m3fn")
|
||||
disabled.add("float8_e5m2")
|
||||
return mixed_precision_ops(model_config.quant_config, compute_dtype, disabled=disabled)
|
||||
|
||||
if (
|
||||
fp8_compute and
|
||||
|
||||
@ -13,6 +13,13 @@ try:
|
||||
get_layout_class,
|
||||
)
|
||||
_CK_AVAILABLE = True
|
||||
if torch.version.cuda is None:
|
||||
ck.registry.disable("cuda")
|
||||
else:
|
||||
cuda_version = tuple(map(int, str(torch.version.cuda).split('.')))
|
||||
if cuda_version < (13,):
|
||||
ck.registry.disable("cuda")
|
||||
|
||||
ck.registry.disable("triton")
|
||||
for k, v in ck.list_backends().items():
|
||||
logging.info(f"Found comfy_kitchen backend {k}: {v}")
|
||||
|
||||
@ -13,7 +13,9 @@ from comfy_api_nodes.util import (
|
||||
poll_op,
|
||||
sync_op,
|
||||
tensor_to_base64_string,
|
||||
upload_video_to_comfyapi,
|
||||
validate_audio_duration,
|
||||
validate_video_duration,
|
||||
)
|
||||
|
||||
|
||||
@ -41,6 +43,12 @@ class Image2VideoInputField(BaseModel):
|
||||
audio_url: str | None = Field(None)
|
||||
|
||||
|
||||
class Reference2VideoInputField(BaseModel):
|
||||
prompt: str = Field(...)
|
||||
negative_prompt: str | None = Field(None)
|
||||
reference_video_urls: list[str] = Field(...)
|
||||
|
||||
|
||||
class Txt2ImageParametersField(BaseModel):
|
||||
size: str = Field(...)
|
||||
n: int = Field(1, description="Number of images to generate.") # we support only value=1
|
||||
@ -76,6 +84,14 @@ class Image2VideoParametersField(BaseModel):
|
||||
shot_type: str = Field("single")
|
||||
|
||||
|
||||
class Reference2VideoParametersField(BaseModel):
|
||||
size: str = Field(...)
|
||||
duration: int = Field(5, ge=5, le=15)
|
||||
shot_type: str = Field("single")
|
||||
seed: int = Field(..., ge=0, le=2147483647)
|
||||
watermark: bool = Field(False)
|
||||
|
||||
|
||||
class Text2ImageTaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
input: Text2ImageInputField = Field(...)
|
||||
@ -100,6 +116,12 @@ class Image2VideoTaskCreationRequest(BaseModel):
|
||||
parameters: Image2VideoParametersField = Field(...)
|
||||
|
||||
|
||||
class Reference2VideoTaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
input: Reference2VideoInputField = Field(...)
|
||||
parameters: Reference2VideoParametersField = Field(...)
|
||||
|
||||
|
||||
class TaskCreationOutputField(BaseModel):
|
||||
task_id: str = Field(...)
|
||||
task_status: str = Field(...)
|
||||
@ -721,6 +743,143 @@ class WanImageToVideoApi(IO.ComfyNode):
|
||||
return IO.NodeOutput(await download_url_to_video_output(response.output.video_url))
|
||||
|
||||
|
||||
class WanReferenceVideoApi(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="WanReferenceVideoApi",
|
||||
display_name="Wan Reference to Video",
|
||||
category="api node/video/Wan",
|
||||
description="Use the character and voice from input videos, combined with a prompt, "
|
||||
"to generate a new video that maintains character consistency.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["wan2.6-r2v"]),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Prompt describing the elements and visual features. Supports English and Chinese. "
|
||||
"Use identifiers such as `character1` and `character2` to refer to the reference characters.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Negative prompt describing what to avoid.",
|
||||
),
|
||||
IO.Autogrow.Input(
|
||||
"reference_videos",
|
||||
template=IO.Autogrow.TemplateNames(
|
||||
IO.Video.Input("reference_video"),
|
||||
names=["character1", "character2", "character3"],
|
||||
min=1,
|
||||
),
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"size",
|
||||
options=[
|
||||
"720p: 1:1 (960x960)",
|
||||
"720p: 16:9 (1280x720)",
|
||||
"720p: 9:16 (720x1280)",
|
||||
"720p: 4:3 (1088x832)",
|
||||
"720p: 3:4 (832x1088)",
|
||||
"1080p: 1:1 (1440x1440)",
|
||||
"1080p: 16:9 (1920x1080)",
|
||||
"1080p: 9:16 (1080x1920)",
|
||||
"1080p: 4:3 (1632x1248)",
|
||||
"1080p: 3:4 (1248x1632)",
|
||||
],
|
||||
),
|
||||
IO.Int.Input(
|
||||
"duration",
|
||||
default=5,
|
||||
min=5,
|
||||
max=10,
|
||||
step=5,
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"shot_type",
|
||||
options=["single", "multi"],
|
||||
tooltip="Specifies the shot type for the generated video, that is, whether the video is a "
|
||||
"single continuous shot or multiple shots with cuts.",
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"watermark",
|
||||
default=False,
|
||||
tooltip="Whether to add an AI-generated watermark to the result.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
reference_videos: IO.Autogrow.Type,
|
||||
size: str,
|
||||
duration: int,
|
||||
seed: int,
|
||||
shot_type: str,
|
||||
watermark: bool,
|
||||
):
|
||||
reference_video_urls = []
|
||||
for i in reference_videos:
|
||||
validate_video_duration(reference_videos[i], min_duration=2, max_duration=30)
|
||||
for i in reference_videos:
|
||||
reference_video_urls.append(await upload_video_to_comfyapi(cls, reference_videos[i]))
|
||||
width, height = RES_IN_PARENS.search(size).groups()
|
||||
initial_response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/wan/api/v1/services/aigc/video-generation/video-synthesis", method="POST"),
|
||||
response_model=TaskCreationResponse,
|
||||
data=Reference2VideoTaskCreationRequest(
|
||||
model=model,
|
||||
input=Reference2VideoInputField(
|
||||
prompt=prompt, negative_prompt=negative_prompt, reference_video_urls=reference_video_urls
|
||||
),
|
||||
parameters=Reference2VideoParametersField(
|
||||
size=f"{width}*{height}",
|
||||
duration=duration,
|
||||
shot_type=shot_type,
|
||||
watermark=watermark,
|
||||
seed=seed,
|
||||
),
|
||||
),
|
||||
)
|
||||
if not initial_response.output:
|
||||
raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}")
|
||||
response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"),
|
||||
response_model=VideoTaskStatusResponse,
|
||||
status_extractor=lambda x: x.output.task_status,
|
||||
poll_interval=6,
|
||||
max_poll_attempts=280,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(response.output.video_url))
|
||||
|
||||
|
||||
class WanApiExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
@ -729,6 +888,7 @@ class WanApiExtension(ComfyExtension):
|
||||
WanImageToImageApi,
|
||||
WanTextToVideoApi,
|
||||
WanImageToVideoApi,
|
||||
WanReferenceVideoApi,
|
||||
]
|
||||
|
||||
|
||||
|
||||
@ -119,7 +119,7 @@ async def upload_video_to_comfyapi(
|
||||
raise ValueError(f"Could not verify video duration from source: {e}") from e
|
||||
|
||||
upload_mime_type = f"video/{container.value.lower()}"
|
||||
filename = f"uploaded_video.{container.value.lower()}"
|
||||
filename = f"{uuid.uuid4()}.{container.value.lower()}"
|
||||
|
||||
# Convert VideoInput to BytesIO using specified container/codec
|
||||
video_bytes_io = BytesIO()
|
||||
|
||||
@ -1,3 +1,3 @@
|
||||
# This file is automatically generated by the build process when version is
|
||||
# updated in pyproject.toml.
|
||||
__version__ = "0.7.0"
|
||||
__version__ = "0.8.0"
|
||||
|
||||
14
nodes.py
14
nodes.py
@ -2109,6 +2109,10 @@ EXTENSION_WEB_DIRS = {}
|
||||
# Dictionary of successfully loaded module names and associated directories.
|
||||
LOADED_MODULE_DIRS = {}
|
||||
|
||||
# Dictionary of import failure reasons keyed by module path.
|
||||
# Used to provide diagnostic information in the import summary.
|
||||
IMPORT_FAILED_REASONS: dict[str, str] = {}
|
||||
|
||||
|
||||
def get_module_name(module_path: str) -> str:
|
||||
"""
|
||||
@ -2223,6 +2227,9 @@ async def load_custom_node(module_path: str, ignore=set(), module_parent="custom
|
||||
logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS or NODES_LIST (need one).")
|
||||
return False
|
||||
except Exception as e:
|
||||
# Capture one-line failure reason for the import summary
|
||||
error_msg = str(e).split('\n')[0][:100] # First line, max 100 chars
|
||||
IMPORT_FAILED_REASONS[module_path] = f"{type(e).__name__}: {error_msg}"
|
||||
logging.warning(traceback.format_exc())
|
||||
logging.warning(f"Cannot import {module_path} module for custom nodes: {e}")
|
||||
return False
|
||||
@ -2270,7 +2277,12 @@ async def init_external_custom_nodes():
|
||||
if n[2]:
|
||||
import_message = ""
|
||||
else:
|
||||
import_message = " (IMPORT FAILED)"
|
||||
# Include failure reason if available
|
||||
reason = IMPORT_FAILED_REASONS.get(n[1], "")
|
||||
if reason:
|
||||
import_message = f" (IMPORT FAILED: {reason})"
|
||||
else:
|
||||
import_message = " (IMPORT FAILED)"
|
||||
logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
|
||||
logging.info("")
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "ComfyUI"
|
||||
version = "0.7.0"
|
||||
version = "0.8.0"
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE" }
|
||||
requires-python = ">=3.10"
|
||||
|
||||
@ -21,7 +21,7 @@ psutil
|
||||
alembic
|
||||
SQLAlchemy
|
||||
av>=14.2.0
|
||||
comfy-kitchen>=0.2.2
|
||||
comfy-kitchen>=0.2.3
|
||||
|
||||
#non essential dependencies:
|
||||
kornia>=0.7.1
|
||||
|
||||
0
tests-unit/nodes_test/__init__.py
Normal file
0
tests-unit/nodes_test/__init__.py
Normal file
89
tests-unit/nodes_test/test_import_failure_reasons.py
Normal file
89
tests-unit/nodes_test/test_import_failure_reasons.py
Normal file
@ -0,0 +1,89 @@
|
||||
"""Tests for custom node import failure reason reporting."""
|
||||
|
||||
import pytest
|
||||
import tempfile
|
||||
import os
|
||||
import shutil
|
||||
from unittest.mock import patch, MagicMock
|
||||
import asyncio
|
||||
|
||||
|
||||
class TestImportFailureReasons:
|
||||
"""Test that import failures include diagnostic information."""
|
||||
|
||||
def test_import_failure_reason_format(self):
|
||||
"""Test that failure reason is formatted correctly."""
|
||||
# Simulate the formatting logic
|
||||
exception = ImportError("No module named 'missing_dep'")
|
||||
error_msg = str(exception).split('\n')[0][:100]
|
||||
reason = f"{type(exception).__name__}: {error_msg}"
|
||||
|
||||
assert reason == "ImportError: No module named 'missing_dep'"
|
||||
|
||||
def test_import_failure_reason_truncation(self):
|
||||
"""Test that long error messages are truncated."""
|
||||
long_msg = "a" * 200
|
||||
exception = ValueError(long_msg)
|
||||
error_msg = str(exception).split('\n')[0][:100]
|
||||
reason = f"{type(exception).__name__}: {error_msg}"
|
||||
|
||||
# Should be truncated to 100 chars for the message part
|
||||
assert len(error_msg) == 100
|
||||
assert reason.startswith("ValueError: ")
|
||||
|
||||
def test_import_failure_reason_multiline(self):
|
||||
"""Test that only first line of error is used."""
|
||||
multi_line_msg = "First line\nSecond line\nThird line"
|
||||
exception = RuntimeError(multi_line_msg)
|
||||
error_msg = str(exception).split('\n')[0][:100]
|
||||
reason = f"{type(exception).__name__}: {error_msg}"
|
||||
|
||||
assert reason == "RuntimeError: First line"
|
||||
assert "Second line" not in reason
|
||||
|
||||
def test_import_failure_reason_various_exceptions(self):
|
||||
"""Test formatting for various exception types."""
|
||||
test_cases = [
|
||||
(ModuleNotFoundError("No module named 'foo'"), "ModuleNotFoundError: No module named 'foo'"),
|
||||
(SyntaxError("invalid syntax"), "SyntaxError: invalid syntax"),
|
||||
(AttributeError("'NoneType' object has no attribute 'bar'"), "AttributeError: 'NoneType' object has no attribute 'bar'"),
|
||||
(FileNotFoundError("[Errno 2] No such file"), "FileNotFoundError: [Errno 2] No such file"),
|
||||
]
|
||||
|
||||
for exception, expected in test_cases:
|
||||
error_msg = str(exception).split('\n')[0][:100]
|
||||
reason = f"{type(exception).__name__}: {error_msg}"
|
||||
assert reason == expected, f"Failed for {type(exception).__name__}"
|
||||
|
||||
|
||||
class TestImportSummaryOutput:
|
||||
"""Test the import summary output format."""
|
||||
|
||||
def test_summary_message_with_reason(self):
|
||||
"""Test that summary includes reason when available."""
|
||||
reason = "ImportError: No module named 'xyz'"
|
||||
import_message = f" (IMPORT FAILED: {reason})"
|
||||
|
||||
assert import_message == " (IMPORT FAILED: ImportError: No module named 'xyz')"
|
||||
|
||||
def test_summary_message_without_reason(self):
|
||||
"""Test fallback when no reason is available."""
|
||||
reason = ""
|
||||
if reason:
|
||||
import_message = f" (IMPORT FAILED: {reason})"
|
||||
else:
|
||||
import_message = " (IMPORT FAILED)"
|
||||
|
||||
assert import_message == " (IMPORT FAILED)"
|
||||
|
||||
def test_summary_format_string(self):
|
||||
"""Test the full summary line format."""
|
||||
time_taken = 0.05
|
||||
import_message = " (IMPORT FAILED: ImportError: missing module)"
|
||||
module_path = "/path/to/custom_nodes/my_node"
|
||||
|
||||
summary_line = "{:6.1f} seconds{}: {}".format(time_taken, import_message, module_path)
|
||||
|
||||
assert "0.1 seconds" in summary_line
|
||||
assert "(IMPORT FAILED: ImportError: missing module)" in summary_line
|
||||
assert module_path in summary_line
|
||||
Loading…
Reference in New Issue
Block a user