mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-10 05:22:34 +08:00
Compare commits
5 Commits
6540aa0400
...
dcf686857c
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
dcf686857c | ||
|
|
17eed38750 | ||
|
|
f4623c0e1b | ||
|
|
5e4bbca1ad | ||
|
|
e17571d9be |
@ -24,11 +24,12 @@ Example usage:
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Optional, Tuple, List
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
import threading
|
||||
import hashlib
|
||||
import pickle
|
||||
import json
|
||||
import logging
|
||||
import math
|
||||
import pickle
|
||||
import threading
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -202,18 +203,66 @@ def clear_cache_providers() -> None:
|
||||
# Utilities
|
||||
# ============================================================
|
||||
|
||||
def _canonicalize(obj: Any) -> Any:
|
||||
"""
|
||||
Convert an object to a canonical, JSON-serializable form.
|
||||
|
||||
This ensures deterministic ordering regardless of Python's hash randomization,
|
||||
which is critical for cross-pod cache key consistency. Frozensets in particular
|
||||
have non-deterministic iteration order between Python sessions.
|
||||
"""
|
||||
if isinstance(obj, frozenset):
|
||||
# Sort frozenset items for deterministic ordering
|
||||
return ("__frozenset__", sorted(
|
||||
[_canonicalize(item) for item in obj],
|
||||
key=lambda x: json.dumps(x, sort_keys=True)
|
||||
))
|
||||
elif isinstance(obj, set):
|
||||
return ("__set__", sorted(
|
||||
[_canonicalize(item) for item in obj],
|
||||
key=lambda x: json.dumps(x, sort_keys=True)
|
||||
))
|
||||
elif isinstance(obj, tuple):
|
||||
return ("__tuple__", [_canonicalize(item) for item in obj])
|
||||
elif isinstance(obj, list):
|
||||
return [_canonicalize(item) for item in obj]
|
||||
elif isinstance(obj, dict):
|
||||
return {str(k): _canonicalize(v) for k, v in sorted(obj.items())}
|
||||
elif isinstance(obj, (int, float, str, bool, type(None))):
|
||||
return obj
|
||||
elif isinstance(obj, bytes):
|
||||
return ("__bytes__", obj.hex())
|
||||
elif hasattr(obj, 'value'):
|
||||
# Handle Unhashable class from ComfyUI
|
||||
return ("__unhashable__", _canonicalize(getattr(obj, 'value', None)))
|
||||
else:
|
||||
# For other types, use repr as fallback
|
||||
return ("__repr__", repr(obj))
|
||||
|
||||
|
||||
def serialize_cache_key(cache_key: Any) -> bytes:
|
||||
"""
|
||||
Serialize cache key to bytes for external storage.
|
||||
|
||||
Returns SHA256 hash suitable for Redis/database keys.
|
||||
|
||||
Note: Uses canonicalize + JSON serialization instead of pickle because
|
||||
pickle is NOT deterministic across Python sessions due to hash randomization
|
||||
affecting frozenset iteration order. This is critical for distributed caching
|
||||
where different pods need to compute the same hash for identical inputs.
|
||||
"""
|
||||
try:
|
||||
serialized = pickle.dumps(cache_key, protocol=4)
|
||||
return hashlib.sha256(serialized).digest()
|
||||
canonical = _canonicalize(cache_key)
|
||||
json_str = json.dumps(canonical, sort_keys=True, separators=(',', ':'))
|
||||
return hashlib.sha256(json_str.encode('utf-8')).digest()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to serialize cache key: {e}")
|
||||
return hashlib.sha256(str(id(cache_key)).encode()).digest()
|
||||
# Fallback to pickle (non-deterministic but better than nothing)
|
||||
try:
|
||||
serialized = pickle.dumps(cache_key, protocol=4)
|
||||
return hashlib.sha256(serialized).digest()
|
||||
except Exception:
|
||||
return hashlib.sha256(str(id(cache_key)).encode()).digest()
|
||||
|
||||
|
||||
def contains_nan(obj: Any) -> bool:
|
||||
|
||||
370
tests-unit/execution_test/test_cache_provider.py
Normal file
370
tests-unit/execution_test/test_cache_provider.py
Normal file
@ -0,0 +1,370 @@
|
||||
"""Tests for external cache provider API."""
|
||||
|
||||
import importlib.util
|
||||
import pytest
|
||||
from typing import Optional
|
||||
|
||||
|
||||
def _torch_available() -> bool:
|
||||
"""Check if PyTorch is available."""
|
||||
return importlib.util.find_spec("torch") is not None
|
||||
|
||||
|
||||
from comfy_execution.cache_provider import (
|
||||
CacheProvider,
|
||||
CacheContext,
|
||||
CacheValue,
|
||||
register_cache_provider,
|
||||
unregister_cache_provider,
|
||||
get_cache_providers,
|
||||
has_cache_providers,
|
||||
clear_cache_providers,
|
||||
serialize_cache_key,
|
||||
contains_nan,
|
||||
estimate_value_size,
|
||||
_canonicalize,
|
||||
)
|
||||
|
||||
|
||||
class TestCanonicalize:
|
||||
"""Test _canonicalize function for deterministic ordering."""
|
||||
|
||||
def test_frozenset_ordering_is_deterministic(self):
|
||||
"""Frozensets should produce consistent canonical form regardless of iteration order."""
|
||||
# Create two frozensets with same content
|
||||
fs1 = frozenset([("a", 1), ("b", 2), ("c", 3)])
|
||||
fs2 = frozenset([("c", 3), ("a", 1), ("b", 2)])
|
||||
|
||||
result1 = _canonicalize(fs1)
|
||||
result2 = _canonicalize(fs2)
|
||||
|
||||
assert result1 == result2
|
||||
|
||||
def test_nested_frozenset_ordering(self):
|
||||
"""Nested frozensets should also be deterministically ordered."""
|
||||
inner1 = frozenset([1, 2, 3])
|
||||
inner2 = frozenset([3, 2, 1])
|
||||
|
||||
fs1 = frozenset([("key", inner1)])
|
||||
fs2 = frozenset([("key", inner2)])
|
||||
|
||||
result1 = _canonicalize(fs1)
|
||||
result2 = _canonicalize(fs2)
|
||||
|
||||
assert result1 == result2
|
||||
|
||||
def test_dict_ordering(self):
|
||||
"""Dicts should be sorted by key."""
|
||||
d1 = {"z": 1, "a": 2, "m": 3}
|
||||
d2 = {"a": 2, "m": 3, "z": 1}
|
||||
|
||||
result1 = _canonicalize(d1)
|
||||
result2 = _canonicalize(d2)
|
||||
|
||||
assert result1 == result2
|
||||
|
||||
def test_tuple_preserved(self):
|
||||
"""Tuples should be marked and preserved."""
|
||||
t = (1, 2, 3)
|
||||
result = _canonicalize(t)
|
||||
|
||||
assert result[0] == "__tuple__"
|
||||
assert result[1] == [1, 2, 3]
|
||||
|
||||
def test_list_preserved(self):
|
||||
"""Lists should be recursively canonicalized."""
|
||||
lst = [{"b": 2, "a": 1}, frozenset([3, 2, 1])]
|
||||
result = _canonicalize(lst)
|
||||
|
||||
# First element should be dict with sorted keys
|
||||
assert result[0] == {"a": 1, "b": 2}
|
||||
# Second element should be canonicalized frozenset
|
||||
assert result[1][0] == "__frozenset__"
|
||||
|
||||
def test_primitives_unchanged(self):
|
||||
"""Primitive types should pass through unchanged."""
|
||||
assert _canonicalize(42) == 42
|
||||
assert _canonicalize(3.14) == 3.14
|
||||
assert _canonicalize("hello") == "hello"
|
||||
assert _canonicalize(True) is True
|
||||
assert _canonicalize(None) is None
|
||||
|
||||
def test_bytes_converted(self):
|
||||
"""Bytes should be converted to hex string."""
|
||||
b = b"\x00\xff"
|
||||
result = _canonicalize(b)
|
||||
|
||||
assert result[0] == "__bytes__"
|
||||
assert result[1] == "00ff"
|
||||
|
||||
def test_set_ordering(self):
|
||||
"""Sets should be sorted like frozensets."""
|
||||
s1 = {3, 1, 2}
|
||||
s2 = {1, 2, 3}
|
||||
|
||||
result1 = _canonicalize(s1)
|
||||
result2 = _canonicalize(s2)
|
||||
|
||||
assert result1 == result2
|
||||
assert result1[0] == "__set__"
|
||||
|
||||
|
||||
class TestSerializeCacheKey:
|
||||
"""Test serialize_cache_key for deterministic hashing."""
|
||||
|
||||
def test_same_content_same_hash(self):
|
||||
"""Same content should produce same hash."""
|
||||
key1 = frozenset([("node_1", frozenset([("input", "value")]))])
|
||||
key2 = frozenset([("node_1", frozenset([("input", "value")]))])
|
||||
|
||||
hash1 = serialize_cache_key(key1)
|
||||
hash2 = serialize_cache_key(key2)
|
||||
|
||||
assert hash1 == hash2
|
||||
|
||||
def test_different_content_different_hash(self):
|
||||
"""Different content should produce different hash."""
|
||||
key1 = frozenset([("node_1", "value_a")])
|
||||
key2 = frozenset([("node_1", "value_b")])
|
||||
|
||||
hash1 = serialize_cache_key(key1)
|
||||
hash2 = serialize_cache_key(key2)
|
||||
|
||||
assert hash1 != hash2
|
||||
|
||||
def test_returns_bytes(self):
|
||||
"""Should return bytes (SHA256 digest)."""
|
||||
key = frozenset([("test", 123)])
|
||||
result = serialize_cache_key(key)
|
||||
|
||||
assert isinstance(result, bytes)
|
||||
assert len(result) == 32 # SHA256 produces 32 bytes
|
||||
|
||||
def test_complex_nested_structure(self):
|
||||
"""Complex nested structures should hash deterministically."""
|
||||
# Note: frozensets can only contain hashable types, so we use
|
||||
# nested frozensets of tuples to represent dict-like structures
|
||||
key = frozenset([
|
||||
("node_1", frozenset([
|
||||
("input_a", ("tuple", "value")),
|
||||
("input_b", frozenset([("nested", "dict")])),
|
||||
])),
|
||||
("node_2", frozenset([
|
||||
("param", 42),
|
||||
])),
|
||||
])
|
||||
|
||||
# Hash twice to verify determinism
|
||||
hash1 = serialize_cache_key(key)
|
||||
hash2 = serialize_cache_key(key)
|
||||
|
||||
assert hash1 == hash2
|
||||
|
||||
def test_dict_in_cache_key(self):
|
||||
"""Dicts passed directly to serialize_cache_key should work."""
|
||||
# This tests the _canonicalize function's ability to handle dicts
|
||||
key = {"node_1": {"input": "value"}, "node_2": 42}
|
||||
|
||||
hash1 = serialize_cache_key(key)
|
||||
hash2 = serialize_cache_key(key)
|
||||
|
||||
assert hash1 == hash2
|
||||
assert isinstance(hash1, bytes)
|
||||
assert len(hash1) == 32
|
||||
|
||||
|
||||
class TestContainsNan:
|
||||
"""Test contains_nan utility function."""
|
||||
|
||||
def test_nan_float_detected(self):
|
||||
"""NaN floats should be detected."""
|
||||
assert contains_nan(float('nan')) is True
|
||||
|
||||
def test_regular_float_not_nan(self):
|
||||
"""Regular floats should not be detected as NaN."""
|
||||
assert contains_nan(3.14) is False
|
||||
assert contains_nan(0.0) is False
|
||||
assert contains_nan(-1.5) is False
|
||||
|
||||
def test_infinity_not_nan(self):
|
||||
"""Infinity is not NaN."""
|
||||
assert contains_nan(float('inf')) is False
|
||||
assert contains_nan(float('-inf')) is False
|
||||
|
||||
def test_nan_in_list(self):
|
||||
"""NaN in list should be detected."""
|
||||
assert contains_nan([1, 2, float('nan'), 4]) is True
|
||||
assert contains_nan([1, 2, 3, 4]) is False
|
||||
|
||||
def test_nan_in_tuple(self):
|
||||
"""NaN in tuple should be detected."""
|
||||
assert contains_nan((1, float('nan'))) is True
|
||||
assert contains_nan((1, 2, 3)) is False
|
||||
|
||||
def test_nan_in_frozenset(self):
|
||||
"""NaN in frozenset should be detected."""
|
||||
assert contains_nan(frozenset([1, float('nan')])) is True
|
||||
assert contains_nan(frozenset([1, 2, 3])) is False
|
||||
|
||||
def test_nan_in_dict_value(self):
|
||||
"""NaN in dict value should be detected."""
|
||||
assert contains_nan({"key": float('nan')}) is True
|
||||
assert contains_nan({"key": 42}) is False
|
||||
|
||||
def test_nan_in_nested_structure(self):
|
||||
"""NaN in deeply nested structure should be detected."""
|
||||
nested = {"level1": [{"level2": (1, 2, float('nan'))}]}
|
||||
assert contains_nan(nested) is True
|
||||
|
||||
def test_non_numeric_types(self):
|
||||
"""Non-numeric types should not be NaN."""
|
||||
assert contains_nan("string") is False
|
||||
assert contains_nan(None) is False
|
||||
assert contains_nan(True) is False
|
||||
|
||||
|
||||
class TestEstimateValueSize:
|
||||
"""Test estimate_value_size utility function."""
|
||||
|
||||
def test_empty_outputs(self):
|
||||
"""Empty outputs should have zero size."""
|
||||
value = CacheValue(outputs=[])
|
||||
assert estimate_value_size(value) == 0
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not _torch_available(),
|
||||
reason="PyTorch not available"
|
||||
)
|
||||
def test_tensor_size_estimation(self):
|
||||
"""Tensor size should be estimated correctly."""
|
||||
import torch
|
||||
|
||||
# 1000 float32 elements = 4000 bytes
|
||||
tensor = torch.zeros(1000, dtype=torch.float32)
|
||||
value = CacheValue(outputs=[[tensor]])
|
||||
|
||||
size = estimate_value_size(value)
|
||||
assert size == 4000
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not _torch_available(),
|
||||
reason="PyTorch not available"
|
||||
)
|
||||
def test_nested_tensor_in_dict(self):
|
||||
"""Tensors nested in dicts should be counted."""
|
||||
import torch
|
||||
|
||||
tensor = torch.zeros(100, dtype=torch.float32) # 400 bytes
|
||||
value = CacheValue(outputs=[[{"samples": tensor}]])
|
||||
|
||||
size = estimate_value_size(value)
|
||||
assert size == 400
|
||||
|
||||
|
||||
class TestProviderRegistry:
|
||||
"""Test cache provider registration and retrieval."""
|
||||
|
||||
def setup_method(self):
|
||||
"""Clear providers before each test."""
|
||||
clear_cache_providers()
|
||||
|
||||
def teardown_method(self):
|
||||
"""Clear providers after each test."""
|
||||
clear_cache_providers()
|
||||
|
||||
def test_register_provider(self):
|
||||
"""Provider should be registered successfully."""
|
||||
provider = MockCacheProvider()
|
||||
register_cache_provider(provider)
|
||||
|
||||
assert has_cache_providers() is True
|
||||
providers = get_cache_providers()
|
||||
assert len(providers) == 1
|
||||
assert providers[0] is provider
|
||||
|
||||
def test_unregister_provider(self):
|
||||
"""Provider should be unregistered successfully."""
|
||||
provider = MockCacheProvider()
|
||||
register_cache_provider(provider)
|
||||
unregister_cache_provider(provider)
|
||||
|
||||
assert has_cache_providers() is False
|
||||
|
||||
def test_multiple_providers(self):
|
||||
"""Multiple providers can be registered."""
|
||||
provider1 = MockCacheProvider()
|
||||
provider2 = MockCacheProvider()
|
||||
|
||||
register_cache_provider(provider1)
|
||||
register_cache_provider(provider2)
|
||||
|
||||
providers = get_cache_providers()
|
||||
assert len(providers) == 2
|
||||
|
||||
def test_duplicate_registration_ignored(self):
|
||||
"""Registering same provider twice should be ignored."""
|
||||
provider = MockCacheProvider()
|
||||
|
||||
register_cache_provider(provider)
|
||||
register_cache_provider(provider) # Should be ignored
|
||||
|
||||
providers = get_cache_providers()
|
||||
assert len(providers) == 1
|
||||
|
||||
def test_clear_providers(self):
|
||||
"""clear_cache_providers should remove all providers."""
|
||||
provider1 = MockCacheProvider()
|
||||
provider2 = MockCacheProvider()
|
||||
|
||||
register_cache_provider(provider1)
|
||||
register_cache_provider(provider2)
|
||||
clear_cache_providers()
|
||||
|
||||
assert has_cache_providers() is False
|
||||
assert len(get_cache_providers()) == 0
|
||||
|
||||
|
||||
class TestCacheContext:
|
||||
"""Test CacheContext dataclass."""
|
||||
|
||||
def test_context_creation(self):
|
||||
"""CacheContext should be created with all fields."""
|
||||
context = CacheContext(
|
||||
prompt_id="prompt-123",
|
||||
node_id="node-456",
|
||||
class_type="KSampler",
|
||||
cache_key=frozenset([("test", "value")]),
|
||||
cache_key_bytes=b"hash_bytes",
|
||||
)
|
||||
|
||||
assert context.prompt_id == "prompt-123"
|
||||
assert context.node_id == "node-456"
|
||||
assert context.class_type == "KSampler"
|
||||
assert context.cache_key == frozenset([("test", "value")])
|
||||
assert context.cache_key_bytes == b"hash_bytes"
|
||||
|
||||
|
||||
class TestCacheValue:
|
||||
"""Test CacheValue dataclass."""
|
||||
|
||||
def test_value_creation(self):
|
||||
"""CacheValue should be created with outputs."""
|
||||
outputs = [[{"samples": "tensor_data"}]]
|
||||
value = CacheValue(outputs=outputs)
|
||||
|
||||
assert value.outputs == outputs
|
||||
|
||||
|
||||
class MockCacheProvider(CacheProvider):
|
||||
"""Mock cache provider for testing."""
|
||||
|
||||
def __init__(self):
|
||||
self.lookups = []
|
||||
self.stores = []
|
||||
|
||||
def on_lookup(self, context: CacheContext) -> Optional[CacheValue]:
|
||||
self.lookups.append(context)
|
||||
return None
|
||||
|
||||
def on_store(self, context: CacheContext, value: CacheValue) -> None:
|
||||
self.stores.append((context, value))
|
||||
Loading…
Reference in New Issue
Block a user