Compare commits

...

7 Commits

Author SHA1 Message Date
Silver
e98c3e5f34
Merge 7d600fe114 into 38d0493825 2026-01-05 03:27:28 +00:00
Silver
7d600fe114
Merge branch 'comfyanonymous:master' into radiance-refactor 2026-01-05 04:27:25 +01:00
comfyanonymous
38d0493825
Fix case where upscale model wouldn't be moved to cpu. (#11633)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
2026-01-04 19:13:50 -05:00
Alexander Piskun
acbf08cd60
feat(api-nodes): add support for 720p resolution for Kling Omni nodes (#11604)
Some checks failed
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Generate Pydantic Stubs from api.comfy.org / generate-models (push) Has been cancelled
2026-01-03 23:05:02 -08:00
silveroxides
a616140d6b remove unused imports 2025-12-19 19:15:22 +01:00
Silver
79641ceff1
Merge branch 'comfyanonymous:master' into radiance-refactor 2025-12-19 19:03:25 +01:00
silveroxides
e41e0060b9 Radiance Refactoring 2025-12-19 15:46:13 +01:00
3 changed files with 209 additions and 17 deletions

View File

@ -9,12 +9,13 @@ import torch
from torch import Tensor, nn
from einops import repeat
import comfy.ldm.common_dit
import comfy.patcher_extension
from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock
from comfy.ldm.flux.layers import EmbedND, timestep_embedding, DoubleStreamBlock, SingleStreamBlock
from comfy.ldm.chroma.model import Chroma, ChromaParams
from comfy.ldm.chroma.layers import (
Approximator,
ChromaModulationOut,
)
from .layers import (
NerfEmbedder,
@ -25,7 +26,26 @@ from .layers import (
@dataclass
class ChromaRadianceParams(ChromaParams):
class ChromaRadianceParams:
# Fields from ChromaParams (now independent)
in_channels: int
out_channels: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list
theta: int
qkv_bias: bool
in_dim: int
out_dim: int
hidden_dim: int
n_layers: int
txt_ids_dims: list
vec_in_dim: int
# ChromaRadiance-specific fields
patch_size: int
nerf_hidden_size: int
nerf_mlp_ratio: int
@ -39,7 +59,7 @@ class ChromaRadianceParams(ChromaParams):
nerf_embedder_dtype: Optional[torch.dtype]
use_x0: bool
class ChromaRadiance(Chroma):
class ChromaRadiance(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
@ -47,7 +67,7 @@ class ChromaRadiance(Chroma):
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
if operations is None:
raise RuntimeError("Attempt to create ChromaRadiance object without setting operations")
nn.Module.__init__(self)
super().__init__()
self.dtype = dtype
params = ChromaRadianceParams(**kwargs)
self.params = params
@ -176,6 +196,155 @@ class ChromaRadiance(Chroma):
# flatten into a sequence for the transformer.
return img.flatten(2).transpose(1, 2) # -> [B, NumPatches, Hidden]
def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
# This function slices up the modulations tensor which has the following layout:
# single : num_single_blocks * 3 elements
# double_img : num_double_blocks * 6 elements
# double_txt : num_double_blocks * 6 elements
# final : 2 elements
if block_type == "final":
return (tensor[:, -2:-1, :], tensor[:, -1:, :])
single_block_count = self.params.depth_single_blocks
double_block_count = self.params.depth
offset = 3 * idx
if block_type == "single":
return ChromaModulationOut.from_offset(tensor, offset)
# Double block modulations are 6 elements so we double 3 * idx.
offset *= 2
if block_type in {"double_img", "double_txt"}:
# Advance past the single block modulations.
offset += 3 * single_block_count
if block_type == "double_txt":
# Advance past the double block img modulations.
offset += 6 * double_block_count
return (
ChromaModulationOut.from_offset(tensor, offset),
ChromaModulationOut.from_offset(tensor, offset + 3),
)
raise ValueError("Bad block_type")
def forward_orig(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
guidance: Tensor = None,
control = None,
transformer_options={},
attn_mask: Tensor = None,
) -> Tensor:
patches_replace = transformer_options.get("patches_replace", {})
# running on sequences img
img = self.img_in(img)
# distilled vector guidance
mod_index_length = 344
distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype)
# guidance = guidance *
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
# get all modulation index
modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
# we need to broadcast the modulation index here so each batch has all of the index
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
# and we need to broadcast timestep and guidance along too
timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
# then and only then we could concatenate it together
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
mod_vectors = self.distilled_guidance_layer(input_vec)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if i not in self.skip_mmdit:
double_mod = (
self.get_modulations(mod_vectors, "double_img", idx=i),
self.get_modulations(mod_vectors, "double_txt", idx=i),
)
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"],
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": double_mod,
"pe": pe,
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img,
txt=txt,
vec=double_mod,
pe=pe,
attn_mask=attn_mask,
transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
img = torch.cat((txt, img), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if i not in self.skip_dit:
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": single_mod,
"pe": pe,
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] :, ...] += add
img = img[:, txt.shape[1] :, ...]
return img
def forward_nerf(
self,
img_orig: Tensor,
@ -285,6 +454,13 @@ class ChromaRadiance(Chroma):
eps = 0.0
return (noisy - predicted) / (timesteps.view(-1,1,1,1) + eps)
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, guidance, control, transformer_options, **kwargs)
def _forward(
self,
x: Tensor,
@ -332,4 +508,3 @@ class ChromaRadiance(Chroma):
if hasattr(self, "__x0__"):
out = self._apply_x0_residual(out, img, timestep)
return out

View File

@ -807,6 +807,7 @@ class OmniProTextToVideoNode(IO.ComfyNode):
),
IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]),
IO.Combo.Input("duration", options=[5, 10]),
IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True),
],
outputs=[
IO.Video.Output(),
@ -826,6 +827,7 @@ class OmniProTextToVideoNode(IO.ComfyNode):
prompt: str,
aspect_ratio: str,
duration: int,
resolution: str = "1080p",
) -> IO.NodeOutput:
validate_string(prompt, min_length=1, max_length=2500)
response = await sync_op(
@ -837,6 +839,7 @@ class OmniProTextToVideoNode(IO.ComfyNode):
prompt=prompt,
aspect_ratio=aspect_ratio,
duration=str(duration),
mode="pro" if resolution == "1080p" else "std",
),
)
return await finish_omni_video_task(cls, response)
@ -872,6 +875,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode):
optional=True,
tooltip="Up to 6 additional reference images.",
),
IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True),
],
outputs=[
IO.Video.Output(),
@ -893,6 +897,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode):
first_frame: Input.Image,
end_frame: Input.Image | None = None,
reference_images: Input.Image | None = None,
resolution: str = "1080p",
) -> IO.NodeOutput:
prompt = normalize_omni_prompt_references(prompt)
validate_string(prompt, min_length=1, max_length=2500)
@ -936,6 +941,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode):
prompt=prompt,
duration=str(duration),
image_list=image_list,
mode="pro" if resolution == "1080p" else "std",
),
)
return await finish_omni_video_task(cls, response)
@ -964,6 +970,7 @@ class OmniProImageToVideoNode(IO.ComfyNode):
"reference_images",
tooltip="Up to 7 reference images.",
),
IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True),
],
outputs=[
IO.Video.Output(),
@ -984,6 +991,7 @@ class OmniProImageToVideoNode(IO.ComfyNode):
aspect_ratio: str,
duration: int,
reference_images: Input.Image,
resolution: str = "1080p",
) -> IO.NodeOutput:
prompt = normalize_omni_prompt_references(prompt)
validate_string(prompt, min_length=1, max_length=2500)
@ -1005,6 +1013,7 @@ class OmniProImageToVideoNode(IO.ComfyNode):
aspect_ratio=aspect_ratio,
duration=str(duration),
image_list=image_list,
mode="pro" if resolution == "1080p" else "std",
),
)
return await finish_omni_video_task(cls, response)
@ -1036,6 +1045,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode):
tooltip="Up to 4 additional reference images.",
optional=True,
),
IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True),
],
outputs=[
IO.Video.Output(),
@ -1058,6 +1068,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode):
reference_video: Input.Video,
keep_original_sound: bool,
reference_images: Input.Image | None = None,
resolution: str = "1080p",
) -> IO.NodeOutput:
prompt = normalize_omni_prompt_references(prompt)
validate_string(prompt, min_length=1, max_length=2500)
@ -1090,6 +1101,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode):
duration=str(duration),
image_list=image_list if image_list else None,
video_list=video_list,
mode="pro" if resolution == "1080p" else "std",
),
)
return await finish_omni_video_task(cls, response)
@ -1119,6 +1131,7 @@ class OmniProEditVideoNode(IO.ComfyNode):
tooltip="Up to 4 additional reference images.",
optional=True,
),
IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True),
],
outputs=[
IO.Video.Output(),
@ -1139,6 +1152,7 @@ class OmniProEditVideoNode(IO.ComfyNode):
video: Input.Video,
keep_original_sound: bool,
reference_images: Input.Image | None = None,
resolution: str = "1080p",
) -> IO.NodeOutput:
prompt = normalize_omni_prompt_references(prompt)
validate_string(prompt, min_length=1, max_length=2500)
@ -1171,6 +1185,7 @@ class OmniProEditVideoNode(IO.ComfyNode):
duration=None,
image_list=image_list if image_list else None,
video_list=video_list,
mode="pro" if resolution == "1080p" else "std",
),
)
return await finish_omni_video_task(cls, response)

View File

@ -78,18 +78,20 @@ class ImageUpscaleWithModel(io.ComfyNode):
overlap = 32
oom = True
while oom:
try:
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
pbar = comfy.utils.ProgressBar(steps)
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
oom = False
except model_management.OOM_EXCEPTION as e:
tile //= 2
if tile < 128:
raise e
try:
while oom:
try:
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
pbar = comfy.utils.ProgressBar(steps)
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
oom = False
except model_management.OOM_EXCEPTION as e:
tile //= 2
if tile < 128:
raise e
finally:
upscale_model.to("cpu")
upscale_model.to("cpu")
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
return io.NodeOutput(s)