mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-28 23:30:16 +08:00
Compare commits
28 Commits
7f72c07e06
...
95e763ecdf
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
95e763ecdf | ||
|
|
e15f3b550f | ||
|
|
6165c38cb5 | ||
|
|
712cca36a1 | ||
|
|
ac4d8ea9b3 | ||
|
|
c9196f355e | ||
|
|
7eb959ce93 | ||
|
|
469dd9c16a | ||
|
|
eff2b9d412 | ||
|
|
15b312de7a | ||
|
|
1419047fdb | ||
|
|
79f6bb5e4f | ||
|
|
e4b4fb3479 | ||
|
|
d9dc02a7d6 | ||
|
|
c543ad81c3 | ||
|
|
5ac1372533 | ||
|
|
1dcbd9efaf | ||
|
|
db9e6edfa1 | ||
|
|
8af13b439b | ||
|
|
acd0e53653 | ||
|
|
117e7a5853 | ||
|
|
b3c0e4de57 | ||
|
|
ecaeeb990d | ||
|
|
c2b65e2fce | ||
|
|
fd5c0755af | ||
|
|
c881a1d689 | ||
|
|
a3b5d4996a | ||
|
|
c6238047ee |
2
.github/workflows/test-launch.yml
vendored
2
.github/workflows/test-launch.yml
vendored
@ -13,7 +13,7 @@ jobs:
|
||||
- name: Checkout ComfyUI
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: "comfyanonymous/ComfyUI"
|
||||
repository: "Comfy-Org/ComfyUI"
|
||||
path: "ComfyUI"
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
|
||||
59
.github/workflows/update-ci-container.yml
vendored
Normal file
59
.github/workflows/update-ci-container.yml
vendored
Normal file
@ -0,0 +1,59 @@
|
||||
name: "CI: Update CI Container"
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [published]
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
version:
|
||||
description: 'ComfyUI version (e.g., v0.7.0)'
|
||||
required: true
|
||||
type: string
|
||||
|
||||
jobs:
|
||||
update-ci-container:
|
||||
runs-on: ubuntu-latest
|
||||
# Skip pre-releases unless manually triggered
|
||||
if: github.event_name == 'workflow_dispatch' || !github.event.release.prerelease
|
||||
steps:
|
||||
- name: Get version
|
||||
id: version
|
||||
run: |
|
||||
if [ "${{ github.event_name }}" = "release" ]; then
|
||||
VERSION="${{ github.event.release.tag_name }}"
|
||||
else
|
||||
VERSION="${{ inputs.version }}"
|
||||
fi
|
||||
echo "version=$VERSION" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Checkout comfyui-ci-container
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: comfy-org/comfyui-ci-container
|
||||
token: ${{ secrets.CI_CONTAINER_PAT }}
|
||||
|
||||
- name: Check current version
|
||||
id: current
|
||||
run: |
|
||||
CURRENT=$(grep -oP 'ARG COMFYUI_VERSION=\K.*' Dockerfile || echo "unknown")
|
||||
echo "current_version=$CURRENT" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Update Dockerfile
|
||||
run: |
|
||||
VERSION="${{ steps.version.outputs.version }}"
|
||||
sed -i "s/^ARG COMFYUI_VERSION=.*/ARG COMFYUI_VERSION=${VERSION}/" Dockerfile
|
||||
|
||||
- name: Create Pull Request
|
||||
id: create-pr
|
||||
uses: peter-evans/create-pull-request@v7
|
||||
with:
|
||||
token: ${{ secrets.CI_CONTAINER_PAT }}
|
||||
branch: automation/comfyui-${{ steps.version.outputs.version }}
|
||||
title: "chore: bump ComfyUI to ${{ steps.version.outputs.version }}"
|
||||
body: |
|
||||
Updates ComfyUI version from `${{ steps.current.outputs.current_version }}` to `${{ steps.version.outputs.version }}`
|
||||
|
||||
**Triggered by:** ${{ github.event_name == 'release' && format('[Release {0}]({1})', github.event.release.tag_name, github.event.release.html_url) || 'Manual workflow dispatch' }}
|
||||
|
||||
labels: automation
|
||||
commit-message: "chore: bump ComfyUI to ${{ steps.version.outputs.version }}"
|
||||
@ -183,7 +183,7 @@ Simply download, extract with [7-Zip](https://7-zip.org) or with the windows exp
|
||||
|
||||
If you have trouble extracting it, right click the file -> properties -> unblock
|
||||
|
||||
Update your Nvidia drivers if it doesn't start.
|
||||
The portable above currently comes with python 3.13 and pytorch cuda 13.0. Update your Nvidia drivers if it doesn't start.
|
||||
|
||||
#### Alternative Downloads:
|
||||
|
||||
@ -212,7 +212,7 @@ Python 3.14 works but you may encounter issues with the torch compile node. The
|
||||
|
||||
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
|
||||
|
||||
torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch unless it is less than 2 weeks old.
|
||||
torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch with the latest cuda version unless it is less than 2 weeks old.
|
||||
|
||||
### Instructions:
|
||||
|
||||
|
||||
@ -92,14 +92,23 @@ def seed_from_paths_batch(
|
||||
session.execute(ins_asset, chunk)
|
||||
|
||||
# try to claim AssetCacheState (file_path)
|
||||
winners_by_path: set[str] = set()
|
||||
# Insert with ON CONFLICT DO NOTHING, then query to find which paths were actually inserted
|
||||
ins_state = (
|
||||
sqlite.insert(AssetCacheState)
|
||||
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
|
||||
.returning(AssetCacheState.file_path)
|
||||
)
|
||||
for chunk in _iter_chunks(state_rows, _rows_per_stmt(3)):
|
||||
winners_by_path.update((session.execute(ins_state, chunk)).scalars().all())
|
||||
session.execute(ins_state, chunk)
|
||||
|
||||
# Query to find which of our paths won (were actually inserted)
|
||||
winners_by_path: set[str] = set()
|
||||
for chunk in _iter_chunks(path_list, MAX_BIND_PARAMS):
|
||||
result = session.execute(
|
||||
sqlalchemy.select(AssetCacheState.file_path)
|
||||
.where(AssetCacheState.file_path.in_(chunk))
|
||||
.where(AssetCacheState.asset_id.in_([path_to_asset[p] for p in chunk]))
|
||||
)
|
||||
winners_by_path.update(result.scalars().all())
|
||||
|
||||
all_paths_set = set(path_list)
|
||||
losers_by_path = all_paths_set - winners_by_path
|
||||
@ -112,16 +121,23 @@ def seed_from_paths_batch(
|
||||
return {"inserted_infos": 0, "won_states": 0, "lost_states": len(losers_by_path)}
|
||||
|
||||
# insert AssetInfo only for winners
|
||||
# Insert with ON CONFLICT DO NOTHING, then query to find which were actually inserted
|
||||
winner_info_rows = [asset_to_info[path_to_asset[p]] for p in winners_by_path]
|
||||
ins_info = (
|
||||
sqlite.insert(AssetInfo)
|
||||
.on_conflict_do_nothing(index_elements=[AssetInfo.asset_id, AssetInfo.owner_id, AssetInfo.name])
|
||||
.returning(AssetInfo.id)
|
||||
)
|
||||
|
||||
inserted_info_ids: set[str] = set()
|
||||
for chunk in _iter_chunks(winner_info_rows, _rows_per_stmt(9)):
|
||||
inserted_info_ids.update((session.execute(ins_info, chunk)).scalars().all())
|
||||
session.execute(ins_info, chunk)
|
||||
|
||||
# Query to find which info rows were actually inserted (by matching our generated IDs)
|
||||
all_info_ids = [row["id"] for row in winner_info_rows]
|
||||
inserted_info_ids: set[str] = set()
|
||||
for chunk in _iter_chunks(all_info_ids, MAX_BIND_PARAMS):
|
||||
result = session.execute(
|
||||
sqlalchemy.select(AssetInfo.id).where(AssetInfo.id.in_(chunk))
|
||||
)
|
||||
inserted_info_ids.update(result.scalars().all())
|
||||
|
||||
# build and insert tag + meta rows for the AssetInfo
|
||||
tag_rows: list[dict] = []
|
||||
|
||||
@ -10,6 +10,7 @@ import hashlib
|
||||
|
||||
class Source:
|
||||
custom_node = "custom_node"
|
||||
templates = "templates"
|
||||
|
||||
class SubgraphEntry(TypedDict):
|
||||
source: str
|
||||
@ -38,6 +39,18 @@ class CustomNodeSubgraphEntryInfo(TypedDict):
|
||||
class SubgraphManager:
|
||||
def __init__(self):
|
||||
self.cached_custom_node_subgraphs: dict[SubgraphEntry] | None = None
|
||||
self.cached_blueprint_subgraphs: dict[SubgraphEntry] | None = None
|
||||
|
||||
def _create_entry(self, file: str, source: str, node_pack: str) -> tuple[str, SubgraphEntry]:
|
||||
"""Create a subgraph entry from a file path. Expects normalized path (forward slashes)."""
|
||||
entry_id = hashlib.sha256(f"{source}{file}".encode()).hexdigest()
|
||||
entry: SubgraphEntry = {
|
||||
"source": source,
|
||||
"name": os.path.splitext(os.path.basename(file))[0],
|
||||
"path": file,
|
||||
"info": {"node_pack": node_pack},
|
||||
}
|
||||
return entry_id, entry
|
||||
|
||||
async def load_entry_data(self, entry: SubgraphEntry):
|
||||
with open(entry['path'], 'r') as f:
|
||||
@ -60,53 +73,60 @@ class SubgraphManager:
|
||||
return entries
|
||||
|
||||
async def get_custom_node_subgraphs(self, loadedModules, force_reload=False):
|
||||
# if not forced to reload and cached, return cache
|
||||
"""Load subgraphs from custom nodes."""
|
||||
if not force_reload and self.cached_custom_node_subgraphs is not None:
|
||||
return self.cached_custom_node_subgraphs
|
||||
# Load subgraphs from custom nodes
|
||||
subfolder = "subgraphs"
|
||||
subgraphs_dict: dict[SubgraphEntry] = {}
|
||||
|
||||
subgraphs_dict: dict[SubgraphEntry] = {}
|
||||
for folder in folder_paths.get_folder_paths("custom_nodes"):
|
||||
pattern = os.path.join(folder, f"*/{subfolder}/*.json")
|
||||
matched_files = glob.glob(pattern)
|
||||
for file in matched_files:
|
||||
# replace backslashes with forward slashes
|
||||
pattern = os.path.join(folder, "*/subgraphs/*.json")
|
||||
for file in glob.glob(pattern):
|
||||
file = file.replace('\\', '/')
|
||||
info: CustomNodeSubgraphEntryInfo = {
|
||||
"node_pack": "custom_nodes." + file.split('/')[-3]
|
||||
}
|
||||
source = Source.custom_node
|
||||
# hash source + path to make sure id will be as unique as possible, but
|
||||
# reproducible across backend reloads
|
||||
id = hashlib.sha256(f"{source}{file}".encode()).hexdigest()
|
||||
entry: SubgraphEntry = {
|
||||
"source": Source.custom_node,
|
||||
"name": os.path.splitext(os.path.basename(file))[0],
|
||||
"path": file,
|
||||
"info": info,
|
||||
}
|
||||
subgraphs_dict[id] = entry
|
||||
node_pack = "custom_nodes." + file.split('/')[-3]
|
||||
entry_id, entry = self._create_entry(file, Source.custom_node, node_pack)
|
||||
subgraphs_dict[entry_id] = entry
|
||||
|
||||
self.cached_custom_node_subgraphs = subgraphs_dict
|
||||
return subgraphs_dict
|
||||
|
||||
async def get_custom_node_subgraph(self, id: str, loadedModules):
|
||||
subgraphs = await self.get_custom_node_subgraphs(loadedModules)
|
||||
entry: SubgraphEntry = subgraphs.get(id, None)
|
||||
if entry is not None and entry.get('data', None) is None:
|
||||
async def get_blueprint_subgraphs(self, force_reload=False):
|
||||
"""Load subgraphs from the blueprints directory."""
|
||||
if not force_reload and self.cached_blueprint_subgraphs is not None:
|
||||
return self.cached_blueprint_subgraphs
|
||||
|
||||
subgraphs_dict: dict[SubgraphEntry] = {}
|
||||
blueprints_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'blueprints')
|
||||
|
||||
if os.path.exists(blueprints_dir):
|
||||
for file in glob.glob(os.path.join(blueprints_dir, "*.json")):
|
||||
file = file.replace('\\', '/')
|
||||
entry_id, entry = self._create_entry(file, Source.templates, "comfyui")
|
||||
subgraphs_dict[entry_id] = entry
|
||||
|
||||
self.cached_blueprint_subgraphs = subgraphs_dict
|
||||
return subgraphs_dict
|
||||
|
||||
async def get_all_subgraphs(self, loadedModules, force_reload=False):
|
||||
"""Get all subgraphs from all sources (custom nodes and blueprints)."""
|
||||
custom_node_subgraphs = await self.get_custom_node_subgraphs(loadedModules, force_reload)
|
||||
blueprint_subgraphs = await self.get_blueprint_subgraphs(force_reload)
|
||||
return {**custom_node_subgraphs, **blueprint_subgraphs}
|
||||
|
||||
async def get_subgraph(self, id: str, loadedModules):
|
||||
"""Get a specific subgraph by ID from any source."""
|
||||
entry = (await self.get_all_subgraphs(loadedModules)).get(id)
|
||||
if entry is not None and entry.get('data') is None:
|
||||
await self.load_entry_data(entry)
|
||||
return entry
|
||||
|
||||
def add_routes(self, routes, loadedModules):
|
||||
@routes.get("/global_subgraphs")
|
||||
async def get_global_subgraphs(request):
|
||||
subgraphs_dict = await self.get_custom_node_subgraphs(loadedModules)
|
||||
# NOTE: we may want to include other sources of global subgraphs such as templates in the future;
|
||||
# that's the reasoning for the current implementation
|
||||
subgraphs_dict = await self.get_all_subgraphs(loadedModules)
|
||||
return web.json_response(await self.sanitize_entries(subgraphs_dict, remove_data=True))
|
||||
|
||||
@routes.get("/global_subgraphs/{id}")
|
||||
async def get_global_subgraph(request):
|
||||
id = request.match_info.get("id", None)
|
||||
subgraph = await self.get_custom_node_subgraph(id, loadedModules)
|
||||
subgraph = await self.get_subgraph(id, loadedModules)
|
||||
return web.json_response(await self.sanitize_entry(subgraph))
|
||||
|
||||
0
blueprints/put_blueprints_here
Normal file
0
blueprints/put_blueprints_here
Normal file
@ -1,6 +1,7 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
import comfy.ops
|
||||
import math
|
||||
|
||||
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
||||
image = image[:, :, :, :3] if image.shape[3] > 3 else image
|
||||
@ -21,6 +22,39 @@ def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], s
|
||||
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
||||
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
||||
|
||||
def siglip2_flex_calc_resolution(oh, ow, patch_size, max_num_patches, eps=1e-5):
|
||||
def scale_dim(size, scale):
|
||||
scaled = math.ceil(size * scale / patch_size) * patch_size
|
||||
return max(patch_size, int(scaled))
|
||||
|
||||
# Binary search for optimal scale
|
||||
lo, hi = eps / 10, 100.0
|
||||
while hi - lo >= eps:
|
||||
mid = (lo + hi) / 2
|
||||
h, w = scale_dim(oh, mid), scale_dim(ow, mid)
|
||||
if (h // patch_size) * (w // patch_size) <= max_num_patches:
|
||||
lo = mid
|
||||
else:
|
||||
hi = mid
|
||||
|
||||
return scale_dim(oh, lo), scale_dim(ow, lo)
|
||||
|
||||
def siglip2_preprocess(image, size, patch_size, num_patches, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], crop=True):
|
||||
if size > 0:
|
||||
return clip_preprocess(image, size=size, mean=mean, std=std, crop=crop)
|
||||
|
||||
image = image[:, :, :, :3] if image.shape[3] > 3 else image
|
||||
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
||||
image = image.movedim(-1, 1)
|
||||
|
||||
b, c, h, w = image.shape
|
||||
h, w = siglip2_flex_calc_resolution(h, w, patch_size, num_patches)
|
||||
|
||||
image = torch.nn.functional.interpolate(image, size=(h, w), mode="bilinear", antialias=True)
|
||||
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
||||
return (image - mean.view([3, 1, 1])) / std.view([3, 1, 1])
|
||||
|
||||
class CLIPAttention(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||
super().__init__()
|
||||
@ -175,6 +209,27 @@ class CLIPTextModel(torch.nn.Module):
|
||||
out = self.text_projection(x[2])
|
||||
return (x[0], x[1], out, x[2])
|
||||
|
||||
def siglip2_pos_embed(embed_weight, embeds, orig_shape):
|
||||
embed_weight_len = round(embed_weight.shape[0] ** 0.5)
|
||||
embed_weight = comfy.ops.cast_to_input(embed_weight, embeds).movedim(1, 0).reshape(1, -1, embed_weight_len, embed_weight_len)
|
||||
embed_weight = torch.nn.functional.interpolate(embed_weight, size=orig_shape, mode="bilinear", align_corners=False, antialias=True)
|
||||
embed_weight = embed_weight.reshape(-1, embed_weight.shape[-2] * embed_weight.shape[-1]).movedim(0, 1)
|
||||
return embeds + embed_weight
|
||||
|
||||
class Siglip2Embeddings(torch.nn.Module):
|
||||
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", num_patches=None, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.patch_embedding = operations.Linear(num_channels * patch_size * patch_size, embed_dim, dtype=dtype, device=device)
|
||||
self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
|
||||
self.patch_size = patch_size
|
||||
|
||||
def forward(self, pixel_values):
|
||||
b, c, h, w = pixel_values.shape
|
||||
img = pixel_values.movedim(1, -1).reshape(b, h // self.patch_size, self.patch_size, w // self.patch_size, self.patch_size, c)
|
||||
img = img.permute(0, 1, 3, 2, 4, 5)
|
||||
img = img.reshape(b, img.shape[1] * img.shape[2], -1)
|
||||
img = self.patch_embedding(img)
|
||||
return siglip2_pos_embed(self.position_embedding.weight, img, (h // self.patch_size, w // self.patch_size))
|
||||
|
||||
class CLIPVisionEmbeddings(torch.nn.Module):
|
||||
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
|
||||
@ -218,8 +273,11 @@ class CLIPVision(torch.nn.Module):
|
||||
intermediate_activation = config_dict["hidden_act"]
|
||||
model_type = config_dict["model_type"]
|
||||
|
||||
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
|
||||
if model_type == "siglip_vision_model":
|
||||
if model_type in ["siglip2_vision_model"]:
|
||||
self.embeddings = Siglip2Embeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, num_patches=config_dict.get("num_patches", None), dtype=dtype, device=device, operations=operations)
|
||||
else:
|
||||
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
|
||||
if model_type in ["siglip_vision_model", "siglip2_vision_model"]:
|
||||
self.pre_layrnorm = lambda a: a
|
||||
self.output_layernorm = True
|
||||
else:
|
||||
|
||||
@ -21,6 +21,7 @@ clip_preprocess = comfy.clip_model.clip_preprocess # Prevent some stuff from br
|
||||
IMAGE_ENCODERS = {
|
||||
"clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
||||
"siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
||||
"siglip2_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
||||
"dinov2": comfy.image_encoders.dino2.Dinov2Model,
|
||||
}
|
||||
|
||||
@ -32,9 +33,10 @@ class ClipVisionModel():
|
||||
self.image_size = config.get("image_size", 224)
|
||||
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
|
||||
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
|
||||
model_type = config.get("model_type", "clip_vision_model")
|
||||
model_class = IMAGE_ENCODERS.get(model_type)
|
||||
if model_type == "siglip_vision_model":
|
||||
self.model_type = config.get("model_type", "clip_vision_model")
|
||||
self.config = config.copy()
|
||||
model_class = IMAGE_ENCODERS.get(self.model_type)
|
||||
if self.model_type == "siglip_vision_model":
|
||||
self.return_all_hidden_states = True
|
||||
else:
|
||||
self.return_all_hidden_states = False
|
||||
@ -55,7 +57,10 @@ class ClipVisionModel():
|
||||
|
||||
def encode_image(self, image, crop=True):
|
||||
comfy.model_management.load_model_gpu(self.patcher)
|
||||
pixel_values = comfy.clip_model.clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
||||
if self.model_type == "siglip2_vision_model":
|
||||
pixel_values = comfy.clip_model.siglip2_preprocess(image.to(self.load_device), size=self.image_size, patch_size=self.config.get("patch_size", 16), num_patches=self.config.get("num_patches", 256), mean=self.image_mean, std=self.image_std, crop=crop).float()
|
||||
else:
|
||||
pixel_values = comfy.clip_model.clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
||||
out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2)
|
||||
|
||||
outputs = Output()
|
||||
@ -107,10 +112,14 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
||||
embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
|
||||
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
|
||||
if embed_shape == 729:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
|
||||
elif embed_shape == 1024:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
|
||||
patch_embedding_shape = sd["vision_model.embeddings.patch_embedding.weight"].shape
|
||||
if len(patch_embedding_shape) == 2:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip2_base_naflex.json")
|
||||
else:
|
||||
if embed_shape == 729:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
|
||||
elif embed_shape == 1024:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
|
||||
elif embed_shape == 577:
|
||||
if "multi_modal_projector.linear_1.bias" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
|
||||
|
||||
14
comfy/clip_vision_siglip2_base_naflex.json
Normal file
14
comfy/clip_vision_siglip2_base_naflex.json
Normal file
@ -0,0 +1,14 @@
|
||||
{
|
||||
"num_channels": 3,
|
||||
"hidden_act": "gelu_pytorch_tanh",
|
||||
"hidden_size": 1152,
|
||||
"image_size": -1,
|
||||
"intermediate_size": 4304,
|
||||
"model_type": "siglip2_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 27,
|
||||
"patch_size": 16,
|
||||
"num_patches": 256,
|
||||
"image_mean": [0.5, 0.5, 0.5],
|
||||
"image_std": [0.5, 0.5, 0.5]
|
||||
}
|
||||
144
comfy/float.py
144
comfy/float.py
@ -65,3 +65,147 @@ def stochastic_rounding(value, dtype, seed=0):
|
||||
return output
|
||||
|
||||
return value.to(dtype=dtype)
|
||||
|
||||
|
||||
# TODO: improve this?
|
||||
def stochastic_float_to_fp4_e2m1(x, generator):
|
||||
orig_shape = x.shape
|
||||
sign = torch.signbit(x).to(torch.uint8)
|
||||
|
||||
exp = torch.floor(torch.log2(x.abs()) + 1.0).clamp(0, 3)
|
||||
x += (torch.rand(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator) - 0.5) * (2 ** (exp - 2.0)) * 1.25
|
||||
|
||||
x = x.abs()
|
||||
exp = torch.floor(torch.log2(x) + 1.1925).clamp(0, 3)
|
||||
|
||||
mantissa = torch.where(
|
||||
exp > 0,
|
||||
(x / (2.0 ** (exp - 1)) - 1.0) * 2.0,
|
||||
(x * 2.0),
|
||||
out=x
|
||||
).round().to(torch.uint8)
|
||||
del x
|
||||
|
||||
exp = exp.to(torch.uint8)
|
||||
|
||||
fp4 = (sign << 3) | (exp << 1) | mantissa
|
||||
del sign, exp, mantissa
|
||||
|
||||
fp4_flat = fp4.view(-1)
|
||||
packed = (fp4_flat[0::2] << 4) | fp4_flat[1::2]
|
||||
return packed.reshape(list(orig_shape)[:-1] + [-1])
|
||||
|
||||
|
||||
def to_blocked(input_matrix, flatten: bool = True) -> torch.Tensor:
|
||||
"""
|
||||
Rearrange a large matrix by breaking it into blocks and applying the rearrangement pattern.
|
||||
See:
|
||||
https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-factors-layout
|
||||
|
||||
Args:
|
||||
input_matrix: Input tensor of shape (H, W)
|
||||
Returns:
|
||||
Rearranged tensor of shape (32*ceil_div(H,128), 16*ceil_div(W,4))
|
||||
"""
|
||||
|
||||
def ceil_div(a, b):
|
||||
return (a + b - 1) // b
|
||||
|
||||
rows, cols = input_matrix.shape
|
||||
n_row_blocks = ceil_div(rows, 128)
|
||||
n_col_blocks = ceil_div(cols, 4)
|
||||
|
||||
# Calculate the padded shape
|
||||
padded_rows = n_row_blocks * 128
|
||||
padded_cols = n_col_blocks * 4
|
||||
|
||||
padded = input_matrix
|
||||
if (rows, cols) != (padded_rows, padded_cols):
|
||||
padded = torch.zeros(
|
||||
(padded_rows, padded_cols),
|
||||
device=input_matrix.device,
|
||||
dtype=input_matrix.dtype,
|
||||
)
|
||||
padded[:rows, :cols] = input_matrix
|
||||
|
||||
# Rearrange the blocks
|
||||
blocks = padded.view(n_row_blocks, 128, n_col_blocks, 4).permute(0, 2, 1, 3)
|
||||
rearranged = blocks.reshape(-1, 4, 32, 4).transpose(1, 2).reshape(-1, 32, 16)
|
||||
if flatten:
|
||||
return rearranged.flatten()
|
||||
|
||||
return rearranged.reshape(padded_rows, padded_cols)
|
||||
|
||||
|
||||
def stochastic_round_quantize_nvfp4_block(x, per_tensor_scale, generator):
|
||||
F4_E2M1_MAX = 6.0
|
||||
F8_E4M3_MAX = 448.0
|
||||
|
||||
orig_shape = x.shape
|
||||
|
||||
block_size = 16
|
||||
|
||||
x = x.reshape(orig_shape[0], -1, block_size)
|
||||
scaled_block_scales_fp8 = torch.clamp(((torch.amax(torch.abs(x), dim=-1)) / F4_E2M1_MAX) / per_tensor_scale.to(x.dtype), max=F8_E4M3_MAX).to(torch.float8_e4m3fn)
|
||||
x = x / (per_tensor_scale.to(x.dtype) * scaled_block_scales_fp8.to(x.dtype)).unsqueeze(-1)
|
||||
|
||||
x = x.view(orig_shape).nan_to_num()
|
||||
data_lp = stochastic_float_to_fp4_e2m1(x, generator=generator)
|
||||
return data_lp, scaled_block_scales_fp8
|
||||
|
||||
|
||||
def stochastic_round_quantize_nvfp4(x, per_tensor_scale, pad_16x, seed=0):
|
||||
def roundup(x: int, multiple: int) -> int:
|
||||
"""Round up x to the nearest multiple."""
|
||||
return ((x + multiple - 1) // multiple) * multiple
|
||||
|
||||
generator = torch.Generator(device=x.device)
|
||||
generator.manual_seed(seed)
|
||||
|
||||
# Handle padding
|
||||
if pad_16x:
|
||||
rows, cols = x.shape
|
||||
padded_rows = roundup(rows, 16)
|
||||
padded_cols = roundup(cols, 16)
|
||||
if padded_rows != rows or padded_cols != cols:
|
||||
x = torch.nn.functional.pad(x, (0, padded_cols - cols, 0, padded_rows - rows))
|
||||
|
||||
x, blocked_scaled = stochastic_round_quantize_nvfp4_block(x, per_tensor_scale, generator)
|
||||
return x, to_blocked(blocked_scaled, flatten=False)
|
||||
|
||||
|
||||
def stochastic_round_quantize_nvfp4_by_block(x, per_tensor_scale, pad_16x, seed=0, block_size=4096 * 4096):
|
||||
def roundup(x: int, multiple: int) -> int:
|
||||
"""Round up x to the nearest multiple."""
|
||||
return ((x + multiple - 1) // multiple) * multiple
|
||||
|
||||
orig_shape = x.shape
|
||||
|
||||
# Handle padding
|
||||
if pad_16x:
|
||||
rows, cols = x.shape
|
||||
padded_rows = roundup(rows, 16)
|
||||
padded_cols = roundup(cols, 16)
|
||||
if padded_rows != rows or padded_cols != cols:
|
||||
x = torch.nn.functional.pad(x, (0, padded_cols - cols, 0, padded_rows - rows))
|
||||
# Note: We update orig_shape because the output tensor logic below assumes x.shape matches
|
||||
# what we want to produce. If we pad here, we want the padded output.
|
||||
orig_shape = x.shape
|
||||
|
||||
orig_shape = list(orig_shape)
|
||||
|
||||
output_fp4 = torch.empty(orig_shape[:-1] + [orig_shape[-1] // 2], dtype=torch.uint8, device=x.device)
|
||||
output_block = torch.empty(orig_shape[:-1] + [orig_shape[-1] // 16], dtype=torch.float8_e4m3fn, device=x.device)
|
||||
|
||||
generator = torch.Generator(device=x.device)
|
||||
generator.manual_seed(seed)
|
||||
|
||||
num_slices = max(1, (x.numel() / block_size))
|
||||
slice_size = max(1, (round(x.shape[0] / num_slices)))
|
||||
|
||||
for i in range(0, x.shape[0], slice_size):
|
||||
fp4, block = stochastic_round_quantize_nvfp4_block(x[i: i + slice_size], per_tensor_scale, generator=generator)
|
||||
output_fp4[i:i + slice_size].copy_(fp4)
|
||||
output_block[i:i + slice_size].copy_(block)
|
||||
|
||||
return output_fp4, to_blocked(output_block, flatten=False)
|
||||
|
||||
@ -11,6 +11,69 @@ from comfy.ldm.lightricks.model import (
|
||||
from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
class CompressedTimestep:
|
||||
"""Store video timestep embeddings in compressed form using per-frame indexing."""
|
||||
__slots__ = ('data', 'batch_size', 'num_frames', 'patches_per_frame', 'feature_dim')
|
||||
|
||||
def __init__(self, tensor: torch.Tensor, patches_per_frame: int):
|
||||
"""
|
||||
tensor: [batch_size, num_tokens, feature_dim] tensor where num_tokens = num_frames * patches_per_frame
|
||||
patches_per_frame: Number of spatial patches per frame (height * width in latent space)
|
||||
"""
|
||||
self.batch_size, num_tokens, self.feature_dim = tensor.shape
|
||||
|
||||
# Check if compression is valid (num_tokens must be divisible by patches_per_frame)
|
||||
if num_tokens % patches_per_frame == 0 and num_tokens >= patches_per_frame:
|
||||
self.patches_per_frame = patches_per_frame
|
||||
self.num_frames = num_tokens // patches_per_frame
|
||||
|
||||
# Reshape to [batch, frames, patches_per_frame, feature_dim] and store one value per frame
|
||||
# All patches in a frame are identical, so we only keep the first one
|
||||
reshaped = tensor.view(self.batch_size, self.num_frames, patches_per_frame, self.feature_dim)
|
||||
self.data = reshaped[:, :, 0, :].contiguous() # [batch, frames, feature_dim]
|
||||
else:
|
||||
# Not divisible or too small - store directly without compression
|
||||
self.patches_per_frame = 1
|
||||
self.num_frames = num_tokens
|
||||
self.data = tensor
|
||||
|
||||
def expand(self):
|
||||
"""Expand back to original tensor."""
|
||||
if self.patches_per_frame == 1:
|
||||
return self.data
|
||||
|
||||
# [batch, frames, feature_dim] -> [batch, frames, patches_per_frame, feature_dim] -> [batch, tokens, feature_dim]
|
||||
expanded = self.data.unsqueeze(2).expand(self.batch_size, self.num_frames, self.patches_per_frame, self.feature_dim)
|
||||
return expanded.reshape(self.batch_size, -1, self.feature_dim)
|
||||
|
||||
def expand_for_computation(self, scale_shift_table: torch.Tensor, batch_size: int, indices: slice = slice(None, None)):
|
||||
"""Compute ada values on compressed per-frame data, then expand spatially."""
|
||||
num_ada_params = scale_shift_table.shape[0]
|
||||
|
||||
# No compression - compute directly
|
||||
if self.patches_per_frame == 1:
|
||||
num_tokens = self.data.shape[1]
|
||||
dim_per_param = self.feature_dim // num_ada_params
|
||||
reshaped = self.data.reshape(batch_size, num_tokens, num_ada_params, dim_per_param)[:, :, indices, :]
|
||||
table_values = scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(device=self.data.device, dtype=self.data.dtype)
|
||||
ada_values = (table_values + reshaped).unbind(dim=2)
|
||||
return ada_values
|
||||
|
||||
# Compressed: compute on per-frame data then expand spatially
|
||||
# Reshape: [batch, frames, feature_dim] -> [batch, frames, num_ada_params, dim_per_param]
|
||||
frame_reshaped = self.data.reshape(batch_size, self.num_frames, num_ada_params, -1)[:, :, indices, :]
|
||||
table_values = scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(
|
||||
device=self.data.device, dtype=self.data.dtype
|
||||
)
|
||||
frame_ada = (table_values + frame_reshaped).unbind(dim=2)
|
||||
|
||||
# Expand each ada parameter spatially: [batch, frames, dim] -> [batch, frames, patches, dim] -> [batch, tokens, dim]
|
||||
return tuple(
|
||||
frame_val.unsqueeze(2).expand(batch_size, self.num_frames, self.patches_per_frame, -1)
|
||||
.reshape(batch_size, -1, frame_val.shape[-1])
|
||||
for frame_val in frame_ada
|
||||
)
|
||||
|
||||
class BasicAVTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -119,6 +182,9 @@ class BasicAVTransformerBlock(nn.Module):
|
||||
def get_ada_values(
|
||||
self, scale_shift_table: torch.Tensor, batch_size: int, timestep: torch.Tensor, indices: slice = slice(None, None)
|
||||
):
|
||||
if isinstance(timestep, CompressedTimestep):
|
||||
return timestep.expand_for_computation(scale_shift_table, batch_size, indices)
|
||||
|
||||
num_ada_params = scale_shift_table.shape[0]
|
||||
|
||||
ada_values = (
|
||||
@ -146,10 +212,7 @@ class BasicAVTransformerBlock(nn.Module):
|
||||
gate_timestep,
|
||||
)
|
||||
|
||||
scale_shift_chunks = [t.squeeze(2) for t in scale_shift_ada_values]
|
||||
gate_ada_values = [t.squeeze(2) for t in gate_ada_values]
|
||||
|
||||
return (*scale_shift_chunks, *gate_ada_values)
|
||||
return (*scale_shift_ada_values, *gate_ada_values)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -543,72 +606,80 @@ class LTXAVModel(LTXVModel):
|
||||
if grid_mask is not None:
|
||||
timestep = timestep[:, grid_mask]
|
||||
|
||||
timestep = timestep * self.timestep_scale_multiplier
|
||||
timestep_scaled = timestep * self.timestep_scale_multiplier
|
||||
|
||||
v_timestep, v_embedded_timestep = self.adaln_single(
|
||||
timestep.flatten(),
|
||||
timestep_scaled.flatten(),
|
||||
{"resolution": None, "aspect_ratio": None},
|
||||
batch_size=batch_size,
|
||||
hidden_dtype=hidden_dtype,
|
||||
)
|
||||
|
||||
# Second dimension is 1 or number of tokens (if timestep_per_token)
|
||||
v_timestep = v_timestep.view(batch_size, -1, v_timestep.shape[-1])
|
||||
v_embedded_timestep = v_embedded_timestep.view(
|
||||
batch_size, -1, v_embedded_timestep.shape[-1]
|
||||
)
|
||||
# Calculate patches_per_frame from orig_shape: [batch, channels, frames, height, width]
|
||||
# Video tokens are arranged as (frames * height * width), so patches_per_frame = height * width
|
||||
orig_shape = kwargs.get("orig_shape")
|
||||
v_patches_per_frame = None
|
||||
if orig_shape is not None and len(orig_shape) == 5:
|
||||
# orig_shape[3] = height, orig_shape[4] = width (in latent space)
|
||||
v_patches_per_frame = orig_shape[3] * orig_shape[4]
|
||||
|
||||
# Reshape to [batch_size, num_tokens, dim] and compress for storage
|
||||
v_timestep = CompressedTimestep(v_timestep.view(batch_size, -1, v_timestep.shape[-1]), v_patches_per_frame)
|
||||
v_embedded_timestep = CompressedTimestep(v_embedded_timestep.view(batch_size, -1, v_embedded_timestep.shape[-1]), v_patches_per_frame)
|
||||
|
||||
# Prepare audio timestep
|
||||
a_timestep = kwargs.get("a_timestep")
|
||||
if a_timestep is not None:
|
||||
a_timestep = a_timestep * self.timestep_scale_multiplier
|
||||
a_timestep_scaled = a_timestep * self.timestep_scale_multiplier
|
||||
a_timestep_flat = a_timestep_scaled.flatten()
|
||||
timestep_flat = timestep_scaled.flatten()
|
||||
av_ca_factor = self.av_ca_timestep_scale_multiplier / self.timestep_scale_multiplier
|
||||
|
||||
# Cross-attention timesteps - compress these too
|
||||
av_ca_audio_scale_shift_timestep, _ = self.av_ca_audio_scale_shift_adaln_single(
|
||||
a_timestep.flatten(),
|
||||
a_timestep_flat,
|
||||
{"resolution": None, "aspect_ratio": None},
|
||||
batch_size=batch_size,
|
||||
hidden_dtype=hidden_dtype,
|
||||
)
|
||||
av_ca_video_scale_shift_timestep, _ = self.av_ca_video_scale_shift_adaln_single(
|
||||
timestep.flatten(),
|
||||
timestep_flat,
|
||||
{"resolution": None, "aspect_ratio": None},
|
||||
batch_size=batch_size,
|
||||
hidden_dtype=hidden_dtype,
|
||||
)
|
||||
av_ca_a2v_gate_noise_timestep, _ = self.av_ca_a2v_gate_adaln_single(
|
||||
timestep.flatten() * av_ca_factor,
|
||||
timestep_flat * av_ca_factor,
|
||||
{"resolution": None, "aspect_ratio": None},
|
||||
batch_size=batch_size,
|
||||
hidden_dtype=hidden_dtype,
|
||||
)
|
||||
av_ca_v2a_gate_noise_timestep, _ = self.av_ca_v2a_gate_adaln_single(
|
||||
a_timestep.flatten() * av_ca_factor,
|
||||
a_timestep_flat * av_ca_factor,
|
||||
{"resolution": None, "aspect_ratio": None},
|
||||
batch_size=batch_size,
|
||||
hidden_dtype=hidden_dtype,
|
||||
)
|
||||
|
||||
# Compress cross-attention timesteps (only video side, audio is too small to benefit)
|
||||
cross_av_timestep_ss = [
|
||||
av_ca_audio_scale_shift_timestep.view(batch_size, -1, av_ca_audio_scale_shift_timestep.shape[-1]),
|
||||
CompressedTimestep(av_ca_video_scale_shift_timestep.view(batch_size, -1, av_ca_video_scale_shift_timestep.shape[-1]), v_patches_per_frame), # video - compressed
|
||||
CompressedTimestep(av_ca_a2v_gate_noise_timestep.view(batch_size, -1, av_ca_a2v_gate_noise_timestep.shape[-1]), v_patches_per_frame), # video - compressed
|
||||
av_ca_v2a_gate_noise_timestep.view(batch_size, -1, av_ca_v2a_gate_noise_timestep.shape[-1]),
|
||||
]
|
||||
|
||||
a_timestep, a_embedded_timestep = self.audio_adaln_single(
|
||||
a_timestep.flatten(),
|
||||
a_timestep_flat,
|
||||
{"resolution": None, "aspect_ratio": None},
|
||||
batch_size=batch_size,
|
||||
hidden_dtype=hidden_dtype,
|
||||
)
|
||||
# Audio timesteps
|
||||
a_timestep = a_timestep.view(batch_size, -1, a_timestep.shape[-1])
|
||||
a_embedded_timestep = a_embedded_timestep.view(
|
||||
batch_size, -1, a_embedded_timestep.shape[-1]
|
||||
)
|
||||
cross_av_timestep_ss = [
|
||||
av_ca_audio_scale_shift_timestep,
|
||||
av_ca_video_scale_shift_timestep,
|
||||
av_ca_a2v_gate_noise_timestep,
|
||||
av_ca_v2a_gate_noise_timestep,
|
||||
]
|
||||
cross_av_timestep_ss = list(
|
||||
[t.view(batch_size, -1, t.shape[-1]) for t in cross_av_timestep_ss]
|
||||
)
|
||||
a_embedded_timestep = a_embedded_timestep.view(batch_size, -1, a_embedded_timestep.shape[-1])
|
||||
else:
|
||||
a_timestep = timestep
|
||||
a_timestep = timestep_scaled
|
||||
a_embedded_timestep = kwargs.get("embedded_timestep")
|
||||
cross_av_timestep_ss = []
|
||||
|
||||
@ -767,6 +838,11 @@ class LTXAVModel(LTXVModel):
|
||||
ax = x[1]
|
||||
v_embedded_timestep = embedded_timestep[0]
|
||||
a_embedded_timestep = embedded_timestep[1]
|
||||
|
||||
# Expand compressed video timestep if needed
|
||||
if isinstance(v_embedded_timestep, CompressedTimestep):
|
||||
v_embedded_timestep = v_embedded_timestep.expand()
|
||||
|
||||
vx = super()._process_output(vx, v_embedded_timestep, keyframe_idxs, **kwargs)
|
||||
|
||||
# Process audio output
|
||||
|
||||
@ -322,6 +322,7 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
key_map["diffusion_model.{}".format(key_lora)] = to
|
||||
key_map["transformer.{}".format(key_lora)] = to
|
||||
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to
|
||||
key_map[key_lora] = to
|
||||
|
||||
if isinstance(model, comfy.model_base.Kandinsky5):
|
||||
for k in sdk:
|
||||
|
||||
@ -699,7 +699,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
|
||||
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
|
||||
if getattr(self, 'layout_type', None) is not None:
|
||||
# dtype is now implicit in the layout class
|
||||
weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", stochastic_rounding=seed, inplace_ops=True)
|
||||
weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", stochastic_rounding=seed, inplace_ops=True).to(self.weight.dtype)
|
||||
else:
|
||||
weight = weight.to(self.weight.dtype)
|
||||
if return_weight:
|
||||
|
||||
@ -7,7 +7,7 @@ try:
|
||||
QuantizedTensor,
|
||||
QuantizedLayout,
|
||||
TensorCoreFP8Layout as _CKFp8Layout,
|
||||
TensorCoreNVFP4Layout, # Direct import, no wrapper needed
|
||||
TensorCoreNVFP4Layout as _CKNvfp4Layout,
|
||||
register_layout_op,
|
||||
register_layout_class,
|
||||
get_layout_class,
|
||||
@ -34,7 +34,7 @@ except ImportError as e:
|
||||
class _CKFp8Layout:
|
||||
pass
|
||||
|
||||
class TensorCoreNVFP4Layout:
|
||||
class _CKNvfp4Layout:
|
||||
pass
|
||||
|
||||
def register_layout_class(name, cls):
|
||||
@ -84,6 +84,39 @@ class _TensorCoreFP8LayoutBase(_CKFp8Layout):
|
||||
return qdata, params
|
||||
|
||||
|
||||
class TensorCoreNVFP4Layout(_CKNvfp4Layout):
|
||||
@classmethod
|
||||
def quantize(cls, tensor, scale=None, stochastic_rounding=0, inplace_ops=False):
|
||||
if tensor.dim() != 2:
|
||||
raise ValueError(f"NVFP4 requires 2D tensor, got {tensor.dim()}D")
|
||||
|
||||
orig_dtype = tensor.dtype
|
||||
orig_shape = tuple(tensor.shape)
|
||||
|
||||
if scale is None or (isinstance(scale, str) and scale == "recalculate"):
|
||||
scale = torch.amax(tensor.abs()) / (ck.float_utils.F8_E4M3_MAX * ck.float_utils.F4_E2M1_MAX)
|
||||
|
||||
if not isinstance(scale, torch.Tensor):
|
||||
scale = torch.tensor(scale)
|
||||
scale = scale.to(device=tensor.device, dtype=torch.float32)
|
||||
|
||||
padded_shape = cls.get_padded_shape(orig_shape)
|
||||
needs_padding = padded_shape != orig_shape
|
||||
|
||||
if stochastic_rounding > 0:
|
||||
qdata, block_scale = comfy.float.stochastic_round_quantize_nvfp4_by_block(tensor, scale, pad_16x=needs_padding, seed=stochastic_rounding)
|
||||
else:
|
||||
qdata, block_scale = ck.quantize_nvfp4(tensor, scale, pad_16x=needs_padding)
|
||||
|
||||
params = cls.Params(
|
||||
scale=scale,
|
||||
orig_dtype=orig_dtype,
|
||||
orig_shape=orig_shape,
|
||||
block_scale=block_scale,
|
||||
)
|
||||
return qdata, params
|
||||
|
||||
|
||||
class TensorCoreFP8E4M3Layout(_TensorCoreFP8LayoutBase):
|
||||
FP8_DTYPE = torch.float8_e4m3fn
|
||||
|
||||
|
||||
@ -845,7 +845,7 @@ class LTXAV(LTXV):
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = 0.061 # TODO
|
||||
self.memory_usage_factor = 0.077 # TODO
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.LTXAV(self, device=device)
|
||||
@ -1042,7 +1042,7 @@ class ZImage(Lumina2):
|
||||
"shift": 3.0,
|
||||
}
|
||||
|
||||
memory_usage_factor = 2.0
|
||||
memory_usage_factor = 2.8
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
|
||||
@ -30,6 +30,7 @@ from torch.nn.functional import interpolate
|
||||
from einops import rearrange
|
||||
from comfy.cli_args import args
|
||||
import json
|
||||
import time
|
||||
|
||||
MMAP_TORCH_FILES = args.mmap_torch_files
|
||||
DISABLE_MMAP = args.disable_mmap
|
||||
@ -1097,6 +1098,10 @@ def set_progress_bar_global_hook(function):
|
||||
global PROGRESS_BAR_HOOK
|
||||
PROGRESS_BAR_HOOK = function
|
||||
|
||||
# Throttle settings for progress bar updates to reduce WebSocket flooding
|
||||
PROGRESS_THROTTLE_MIN_INTERVAL = 0.1 # 100ms minimum between updates
|
||||
PROGRESS_THROTTLE_MIN_PERCENT = 0.5 # 0.5% minimum progress change
|
||||
|
||||
class ProgressBar:
|
||||
def __init__(self, total, node_id=None):
|
||||
global PROGRESS_BAR_HOOK
|
||||
@ -1104,6 +1109,8 @@ class ProgressBar:
|
||||
self.current = 0
|
||||
self.hook = PROGRESS_BAR_HOOK
|
||||
self.node_id = node_id
|
||||
self._last_update_time = 0.0
|
||||
self._last_sent_value = -1
|
||||
|
||||
def update_absolute(self, value, total=None, preview=None):
|
||||
if total is not None:
|
||||
@ -1112,7 +1119,29 @@ class ProgressBar:
|
||||
value = self.total
|
||||
self.current = value
|
||||
if self.hook is not None:
|
||||
self.hook(self.current, self.total, preview, node_id=self.node_id)
|
||||
current_time = time.perf_counter()
|
||||
is_first = (self._last_sent_value < 0)
|
||||
is_final = (value >= self.total)
|
||||
has_preview = (preview is not None)
|
||||
|
||||
# Always send immediately for previews, first update, or final update
|
||||
if has_preview or is_first or is_final:
|
||||
self.hook(self.current, self.total, preview, node_id=self.node_id)
|
||||
self._last_update_time = current_time
|
||||
self._last_sent_value = value
|
||||
return
|
||||
|
||||
# Apply throttling for regular progress updates
|
||||
if self.total > 0:
|
||||
percent_changed = ((value - max(0, self._last_sent_value)) / self.total) * 100
|
||||
else:
|
||||
percent_changed = 100
|
||||
time_elapsed = current_time - self._last_update_time
|
||||
|
||||
if time_elapsed >= PROGRESS_THROTTLE_MIN_INTERVAL and percent_changed >= PROGRESS_THROTTLE_MIN_PERCENT:
|
||||
self.hook(self.current, self.total, preview, node_id=self.node_id)
|
||||
self._last_update_time = current_time
|
||||
self._last_sent_value = value
|
||||
|
||||
def update(self, value):
|
||||
self.update_absolute(self.current + value)
|
||||
|
||||
@ -1225,6 +1225,7 @@ class NodeInfoV1:
|
||||
deprecated: bool=None
|
||||
experimental: bool=None
|
||||
api_node: bool=None
|
||||
price_badge: dict | None = None
|
||||
|
||||
@dataclass
|
||||
class NodeInfoV3:
|
||||
@ -1234,11 +1235,77 @@ class NodeInfoV3:
|
||||
name: str=None
|
||||
display_name: str=None
|
||||
description: str=None
|
||||
python_module: Any = None
|
||||
category: str=None
|
||||
output_node: bool=None
|
||||
deprecated: bool=None
|
||||
experimental: bool=None
|
||||
api_node: bool=None
|
||||
price_badge: dict | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class PriceBadgeDepends:
|
||||
widgets: list[str] = field(default_factory=list)
|
||||
inputs: list[str] = field(default_factory=list)
|
||||
input_groups: list[str] = field(default_factory=list)
|
||||
|
||||
def validate(self) -> None:
|
||||
if not isinstance(self.widgets, list) or any(not isinstance(x, str) for x in self.widgets):
|
||||
raise ValueError("PriceBadgeDepends.widgets must be a list[str].")
|
||||
if not isinstance(self.inputs, list) or any(not isinstance(x, str) for x in self.inputs):
|
||||
raise ValueError("PriceBadgeDepends.inputs must be a list[str].")
|
||||
if not isinstance(self.input_groups, list) or any(not isinstance(x, str) for x in self.input_groups):
|
||||
raise ValueError("PriceBadgeDepends.input_groups must be a list[str].")
|
||||
|
||||
def as_dict(self, schema_inputs: list["Input"]) -> dict[str, Any]:
|
||||
# Build lookup: widget_id -> io_type
|
||||
input_types: dict[str, str] = {}
|
||||
for inp in schema_inputs:
|
||||
all_inputs = inp.get_all()
|
||||
input_types[inp.id] = inp.get_io_type() # First input is always the parent itself
|
||||
for nested_inp in all_inputs[1:]:
|
||||
# For DynamicCombo/DynamicSlot, nested inputs are prefixed with parent ID
|
||||
# to match frontend naming convention (e.g., "should_texture.enable_pbr")
|
||||
prefixed_id = f"{inp.id}.{nested_inp.id}"
|
||||
input_types[prefixed_id] = nested_inp.get_io_type()
|
||||
|
||||
# Enrich widgets with type information, raising error for unknown widgets
|
||||
widgets_data: list[dict[str, str]] = []
|
||||
for w in self.widgets:
|
||||
if w not in input_types:
|
||||
raise ValueError(
|
||||
f"PriceBadge depends_on.widgets references unknown widget '{w}'. "
|
||||
f"Available widgets: {list(input_types.keys())}"
|
||||
)
|
||||
widgets_data.append({"name": w, "type": input_types[w]})
|
||||
|
||||
return {
|
||||
"widgets": widgets_data,
|
||||
"inputs": self.inputs,
|
||||
"input_groups": self.input_groups,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class PriceBadge:
|
||||
expr: str
|
||||
depends_on: PriceBadgeDepends = field(default_factory=PriceBadgeDepends)
|
||||
engine: str = field(default="jsonata")
|
||||
|
||||
def validate(self) -> None:
|
||||
if self.engine != "jsonata":
|
||||
raise ValueError(f"Unsupported PriceBadge.engine '{self.engine}'. Only 'jsonata' is supported.")
|
||||
if not isinstance(self.expr, str) or not self.expr.strip():
|
||||
raise ValueError("PriceBadge.expr must be a non-empty string.")
|
||||
self.depends_on.validate()
|
||||
|
||||
def as_dict(self, schema_inputs: list["Input"]) -> dict[str, Any]:
|
||||
return {
|
||||
"engine": self.engine,
|
||||
"depends_on": self.depends_on.as_dict(schema_inputs),
|
||||
"expr": self.expr,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -1284,6 +1351,8 @@ class Schema:
|
||||
"""Flags a node as experimental, informing users that it may change or not work as expected."""
|
||||
is_api_node: bool=False
|
||||
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
|
||||
price_badge: PriceBadge | None = None
|
||||
"""Optional client-evaluated pricing badge declaration for this node."""
|
||||
not_idempotent: bool=False
|
||||
"""Flags a node as not idempotent; when True, the node will run and not reuse the cached outputs when identical inputs are provided on a different node in the graph."""
|
||||
enable_expand: bool=False
|
||||
@ -1314,6 +1383,8 @@ class Schema:
|
||||
input.validate()
|
||||
for output in self.outputs:
|
||||
output.validate()
|
||||
if self.price_badge is not None:
|
||||
self.price_badge.validate()
|
||||
|
||||
def finalize(self):
|
||||
"""Add hidden based on selected schema options, and give outputs without ids default ids."""
|
||||
@ -1387,7 +1458,8 @@ class Schema:
|
||||
deprecated=self.is_deprecated,
|
||||
experimental=self.is_experimental,
|
||||
api_node=self.is_api_node,
|
||||
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes")
|
||||
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes"),
|
||||
price_badge=self.price_badge.as_dict(self.inputs) if self.price_badge is not None else None,
|
||||
)
|
||||
return info
|
||||
|
||||
@ -1419,7 +1491,8 @@ class Schema:
|
||||
deprecated=self.is_deprecated,
|
||||
experimental=self.is_experimental,
|
||||
api_node=self.is_api_node,
|
||||
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes")
|
||||
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes"),
|
||||
price_badge=self.price_badge.as_dict(self.inputs) if self.price_badge is not None else None,
|
||||
)
|
||||
return info
|
||||
|
||||
@ -1971,4 +2044,6 @@ __all__ = [
|
||||
"add_to_dict_v3",
|
||||
"V3Data",
|
||||
"ImageCompare",
|
||||
"PriceBadgeDepends",
|
||||
"PriceBadge",
|
||||
]
|
||||
|
||||
160
comfy_api_nodes/apis/meshy.py
Normal file
160
comfy_api_nodes/apis/meshy.py
Normal file
@ -0,0 +1,160 @@
|
||||
from typing import TypedDict
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from comfy_api.latest import Input
|
||||
|
||||
|
||||
class InputShouldRemesh(TypedDict):
|
||||
should_remesh: str
|
||||
topology: str
|
||||
target_polycount: int
|
||||
|
||||
|
||||
class InputShouldTexture(TypedDict):
|
||||
should_texture: str
|
||||
enable_pbr: bool
|
||||
texture_prompt: str
|
||||
texture_image: Input.Image | None
|
||||
|
||||
|
||||
class MeshyTaskResponse(BaseModel):
|
||||
result: str = Field(...)
|
||||
|
||||
|
||||
class MeshyTextToModelRequest(BaseModel):
|
||||
mode: str = Field("preview")
|
||||
prompt: str = Field(..., max_length=600)
|
||||
art_style: str = Field(..., description="'realistic' or 'sculpture'")
|
||||
ai_model: str = Field(...)
|
||||
topology: str | None = Field(..., description="'quad' or 'triangle'")
|
||||
target_polycount: int | None = Field(..., ge=100, le=300000)
|
||||
should_remesh: bool = Field(
|
||||
True,
|
||||
description="False returns the original mesh, ignoring topology and polycount.",
|
||||
)
|
||||
symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'")
|
||||
pose_mode: str = Field(...)
|
||||
seed: int = Field(...)
|
||||
moderation: bool = Field(False)
|
||||
|
||||
|
||||
class MeshyRefineTask(BaseModel):
|
||||
mode: str = Field("refine")
|
||||
preview_task_id: str = Field(...)
|
||||
enable_pbr: bool | None = Field(...)
|
||||
texture_prompt: str | None = Field(...)
|
||||
texture_image_url: str | None = Field(...)
|
||||
ai_model: str = Field(...)
|
||||
moderation: bool = Field(False)
|
||||
|
||||
|
||||
class MeshyImageToModelRequest(BaseModel):
|
||||
image_url: str = Field(...)
|
||||
ai_model: str = Field(...)
|
||||
topology: str | None = Field(..., description="'quad' or 'triangle'")
|
||||
target_polycount: int | None = Field(..., ge=100, le=300000)
|
||||
symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'")
|
||||
should_remesh: bool = Field(
|
||||
True,
|
||||
description="False returns the original mesh, ignoring topology and polycount.",
|
||||
)
|
||||
should_texture: bool = Field(...)
|
||||
enable_pbr: bool | None = Field(...)
|
||||
pose_mode: str = Field(...)
|
||||
texture_prompt: str | None = Field(None, max_length=600)
|
||||
texture_image_url: str | None = Field(None)
|
||||
seed: int = Field(...)
|
||||
moderation: bool = Field(False)
|
||||
|
||||
|
||||
class MeshyMultiImageToModelRequest(BaseModel):
|
||||
image_urls: list[str] = Field(...)
|
||||
ai_model: str = Field(...)
|
||||
topology: str | None = Field(..., description="'quad' or 'triangle'")
|
||||
target_polycount: int | None = Field(..., ge=100, le=300000)
|
||||
symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'")
|
||||
should_remesh: bool = Field(
|
||||
True,
|
||||
description="False returns the original mesh, ignoring topology and polycount.",
|
||||
)
|
||||
should_texture: bool = Field(...)
|
||||
enable_pbr: bool | None = Field(...)
|
||||
pose_mode: str = Field(...)
|
||||
texture_prompt: str | None = Field(None, max_length=600)
|
||||
texture_image_url: str | None = Field(None)
|
||||
seed: int = Field(...)
|
||||
moderation: bool = Field(False)
|
||||
|
||||
|
||||
class MeshyRiggingRequest(BaseModel):
|
||||
input_task_id: str = Field(...)
|
||||
height_meters: float = Field(...)
|
||||
texture_image_url: str | None = Field(...)
|
||||
|
||||
|
||||
class MeshyAnimationRequest(BaseModel):
|
||||
rig_task_id: str = Field(...)
|
||||
action_id: int = Field(...)
|
||||
|
||||
|
||||
class MeshyTextureRequest(BaseModel):
|
||||
input_task_id: str = Field(...)
|
||||
ai_model: str = Field(...)
|
||||
enable_original_uv: bool = Field(...)
|
||||
enable_pbr: bool = Field(...)
|
||||
text_style_prompt: str | None = Field(...)
|
||||
image_style_url: str | None = Field(...)
|
||||
|
||||
|
||||
class MeshyModelsUrls(BaseModel):
|
||||
glb: str = Field("")
|
||||
|
||||
|
||||
class MeshyRiggedModelsUrls(BaseModel):
|
||||
rigged_character_glb_url: str = Field("")
|
||||
|
||||
|
||||
class MeshyAnimatedModelsUrls(BaseModel):
|
||||
animation_glb_url: str = Field("")
|
||||
|
||||
|
||||
class MeshyResultTextureUrls(BaseModel):
|
||||
base_color: str = Field(...)
|
||||
metallic: str | None = Field(None)
|
||||
normal: str | None = Field(None)
|
||||
roughness: str | None = Field(None)
|
||||
|
||||
|
||||
class MeshyTaskError(BaseModel):
|
||||
message: str | None = Field(None)
|
||||
|
||||
|
||||
class MeshyModelResult(BaseModel):
|
||||
id: str = Field(...)
|
||||
type: str = Field(...)
|
||||
model_urls: MeshyModelsUrls = Field(MeshyModelsUrls())
|
||||
thumbnail_url: str = Field(...)
|
||||
video_url: str | None = Field(None)
|
||||
status: str = Field(...)
|
||||
progress: int = Field(0)
|
||||
texture_urls: list[MeshyResultTextureUrls] | None = Field([])
|
||||
task_error: MeshyTaskError | None = Field(None)
|
||||
|
||||
|
||||
class MeshyRiggedResult(BaseModel):
|
||||
id: str = Field(...)
|
||||
type: str = Field(...)
|
||||
status: str = Field(...)
|
||||
progress: int = Field(0)
|
||||
result: MeshyRiggedModelsUrls = Field(MeshyRiggedModelsUrls())
|
||||
task_error: MeshyTaskError | None = Field(None)
|
||||
|
||||
|
||||
class MeshyAnimationResult(BaseModel):
|
||||
id: str = Field(...)
|
||||
type: str = Field(...)
|
||||
status: str = Field(...)
|
||||
progress: int = Field(0)
|
||||
result: MeshyAnimatedModelsUrls = Field(MeshyAnimatedModelsUrls())
|
||||
task_error: MeshyTaskError | None = Field(None)
|
||||
@ -97,6 +97,9 @@ class FluxProUltraImageNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.06}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -352,6 +355,9 @@ class FluxProExpandNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.05}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -458,6 +464,9 @@ class FluxProFillNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.05}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -511,6 +520,21 @@ class Flux2ProImageNode(IO.ComfyNode):
|
||||
NODE_ID = "Flux2ProImageNode"
|
||||
DISPLAY_NAME = "Flux.2 [pro] Image"
|
||||
API_ENDPOINT = "/proxy/bfl/flux-2-pro/generate"
|
||||
PRICE_BADGE_EXPR = """
|
||||
(
|
||||
$MP := 1024 * 1024;
|
||||
$outMP := $max([1, $floor(((widgets.width * widgets.height) + $MP - 1) / $MP)]);
|
||||
$outputCost := 0.03 + 0.015 * ($outMP - 1);
|
||||
inputs.images.connected
|
||||
? {
|
||||
"type":"range_usd",
|
||||
"min_usd": $outputCost + 0.015,
|
||||
"max_usd": $outputCost + 0.12,
|
||||
"format": { "approximate": true }
|
||||
}
|
||||
: {"type":"usd","usd": $outputCost}
|
||||
)
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
@ -563,6 +587,10 @@ class Flux2ProImageNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["width", "height"], inputs=["images"]),
|
||||
expr=cls.PRICE_BADGE_EXPR,
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -623,6 +651,22 @@ class Flux2MaxImageNode(Flux2ProImageNode):
|
||||
NODE_ID = "Flux2MaxImageNode"
|
||||
DISPLAY_NAME = "Flux.2 [max] Image"
|
||||
API_ENDPOINT = "/proxy/bfl/flux-2-max/generate"
|
||||
PRICE_BADGE_EXPR = """
|
||||
(
|
||||
$MP := 1024 * 1024;
|
||||
$outMP := $max([1, $floor(((widgets.width * widgets.height) + $MP - 1) / $MP)]);
|
||||
$outputCost := 0.07 + 0.03 * ($outMP - 1);
|
||||
|
||||
inputs.images.connected
|
||||
? {
|
||||
"type":"range_usd",
|
||||
"min_usd": $outputCost + 0.03,
|
||||
"max_usd": $outputCost + 0.24,
|
||||
"format": { "approximate": true }
|
||||
}
|
||||
: {"type":"usd","usd": $outputCost}
|
||||
)
|
||||
"""
|
||||
|
||||
|
||||
class BFLExtension(ComfyExtension):
|
||||
|
||||
@ -126,6 +126,9 @@ class ByteDanceImageNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.03}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -367,6 +370,19 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model"]),
|
||||
expr="""
|
||||
(
|
||||
$price := $contains(widgets.model, "seedream-4-5-251128") ? 0.04 : 0.03;
|
||||
{
|
||||
"type":"usd",
|
||||
"usd": $price,
|
||||
"format": { "suffix":" x images/Run", "approximate": true }
|
||||
}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -522,6 +538,7 @@ class ByteDanceTextToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=PRICE_BADGE_VIDEO,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -632,6 +649,7 @@ class ByteDanceImageToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=PRICE_BADGE_VIDEO,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -754,6 +772,7 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=PRICE_BADGE_VIDEO,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -877,6 +896,7 @@ class ByteDanceImageReferenceNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=PRICE_BADGE_VIDEO,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -946,6 +966,52 @@ def raise_if_text_params(prompt: str, text_params: list[str]) -> None:
|
||||
)
|
||||
|
||||
|
||||
PRICE_BADGE_VIDEO = IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model", "duration", "resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$priceByModel := {
|
||||
"seedance-1-0-pro": {
|
||||
"480p":[0.23,0.24],
|
||||
"720p":[0.51,0.56],
|
||||
"1080p":[1.18,1.22]
|
||||
},
|
||||
"seedance-1-0-pro-fast": {
|
||||
"480p":[0.09,0.1],
|
||||
"720p":[0.21,0.23],
|
||||
"1080p":[0.47,0.49]
|
||||
},
|
||||
"seedance-1-0-lite": {
|
||||
"480p":[0.17,0.18],
|
||||
"720p":[0.37,0.41],
|
||||
"1080p":[0.85,0.88]
|
||||
}
|
||||
};
|
||||
$model := widgets.model;
|
||||
$modelKey :=
|
||||
$contains($model, "seedance-1-0-pro-fast") ? "seedance-1-0-pro-fast" :
|
||||
$contains($model, "seedance-1-0-pro") ? "seedance-1-0-pro" :
|
||||
"seedance-1-0-lite";
|
||||
$resolution := widgets.resolution;
|
||||
$resKey :=
|
||||
$contains($resolution, "1080") ? "1080p" :
|
||||
$contains($resolution, "720") ? "720p" :
|
||||
"480p";
|
||||
$modelPrices := $lookup($priceByModel, $modelKey);
|
||||
$baseRange := $lookup($modelPrices, $resKey);
|
||||
$min10s := $baseRange[0];
|
||||
$max10s := $baseRange[1];
|
||||
$scale := widgets.duration / 10;
|
||||
$minCost := $min10s * $scale;
|
||||
$maxCost := $max10s * $scale;
|
||||
($minCost = $maxCost)
|
||||
? {"type":"usd","usd": $minCost}
|
||||
: {"type":"range_usd","min_usd": $minCost, "max_usd": $maxCost}
|
||||
)
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
class ByteDanceExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
|
||||
@ -130,7 +130,7 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera
|
||||
Returns:
|
||||
List of response parts matching the requested type.
|
||||
"""
|
||||
if response.candidates is None:
|
||||
if not response.candidates:
|
||||
if response.promptFeedback and response.promptFeedback.blockReason:
|
||||
feedback = response.promptFeedback
|
||||
raise ValueError(
|
||||
@ -141,14 +141,24 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera
|
||||
"try changing it to `IMAGE+TEXT` to view the model's reasoning and understand why image generation failed."
|
||||
)
|
||||
parts = []
|
||||
for part in response.candidates[0].content.parts:
|
||||
if part_type == "text" and part.text:
|
||||
parts.append(part)
|
||||
elif part.inlineData and part.inlineData.mimeType == part_type:
|
||||
parts.append(part)
|
||||
elif part.fileData and part.fileData.mimeType == part_type:
|
||||
parts.append(part)
|
||||
# Skip parts that don't match the requested type
|
||||
blocked_reasons = []
|
||||
for candidate in response.candidates:
|
||||
if candidate.finishReason and candidate.finishReason.upper() == "IMAGE_PROHIBITED_CONTENT":
|
||||
blocked_reasons.append(candidate.finishReason)
|
||||
continue
|
||||
if candidate.content is None or candidate.content.parts is None:
|
||||
continue
|
||||
for part in candidate.content.parts:
|
||||
if part_type == "text" and part.text:
|
||||
parts.append(part)
|
||||
elif part.inlineData and part.inlineData.mimeType == part_type:
|
||||
parts.append(part)
|
||||
elif part.fileData and part.fileData.mimeType == part_type:
|
||||
parts.append(part)
|
||||
|
||||
if not parts and blocked_reasons:
|
||||
raise ValueError(f"Gemini API blocked the request. Reasons: {blocked_reasons}")
|
||||
|
||||
return parts
|
||||
|
||||
|
||||
@ -309,6 +319,30 @@ class GeminiNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model"]),
|
||||
expr="""
|
||||
(
|
||||
$m := widgets.model;
|
||||
$contains($m, "gemini-2.5-flash") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.0003, 0.0025],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens"}
|
||||
}
|
||||
: $contains($m, "gemini-2.5-pro") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.00125, 0.01],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gemini-3-pro-preview") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.002, 0.012],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: {"type":"text", "text":"Token-based"}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -570,6 +604,9 @@ class GeminiImage(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.039,"format":{"suffix":"/Image (1K)","approximate":true}}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -700,6 +737,19 @@ class GeminiImage2(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$r := widgets.resolution;
|
||||
($contains($r,"1k") or $contains($r,"2k"))
|
||||
? {"type":"usd","usd":0.134,"format":{"suffix":"/Image","approximate":true}}
|
||||
: $contains($r,"4k")
|
||||
? {"type":"usd","usd":0.24,"format":{"suffix":"/Image","approximate":true}}
|
||||
: {"type":"text","text":"Token-based"}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -236,7 +236,6 @@ class IdeogramV1(IO.ComfyNode):
|
||||
display_name="Ideogram V1",
|
||||
category="api node/image/Ideogram",
|
||||
description="Generates images using the Ideogram V1 model.",
|
||||
is_api_node=True,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@ -298,6 +297,17 @@ class IdeogramV1(IO.ComfyNode):
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["num_images", "turbo"]),
|
||||
expr="""
|
||||
(
|
||||
$n := widgets.num_images;
|
||||
$base := (widgets.turbo = true) ? 0.0286 : 0.0858;
|
||||
{"type":"usd","usd": $round($base * $n, 2)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -351,7 +361,6 @@ class IdeogramV2(IO.ComfyNode):
|
||||
display_name="Ideogram V2",
|
||||
category="api node/image/Ideogram",
|
||||
description="Generates images using the Ideogram V2 model.",
|
||||
is_api_node=True,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@ -436,6 +445,17 @@ class IdeogramV2(IO.ComfyNode):
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["num_images", "turbo"]),
|
||||
expr="""
|
||||
(
|
||||
$n := widgets.num_images;
|
||||
$base := (widgets.turbo = true) ? 0.0715 : 0.1144;
|
||||
{"type":"usd","usd": $round($base * $n, 2)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -506,7 +526,6 @@ class IdeogramV3(IO.ComfyNode):
|
||||
category="api node/image/Ideogram",
|
||||
description="Generates images using the Ideogram V3 model. "
|
||||
"Supports both regular image generation from text prompts and image editing with mask.",
|
||||
is_api_node=True,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@ -591,6 +610,23 @@ class IdeogramV3(IO.ComfyNode):
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["rendering_speed", "num_images"], inputs=["character_image"]),
|
||||
expr="""
|
||||
(
|
||||
$n := widgets.num_images;
|
||||
$speed := widgets.rendering_speed;
|
||||
$hasChar := inputs.character_image.connected;
|
||||
$base :=
|
||||
$contains($speed,"quality") ? ($hasChar ? 0.286 : 0.1287) :
|
||||
$contains($speed,"default") ? ($hasChar ? 0.2145 : 0.0858) :
|
||||
$contains($speed,"turbo") ? ($hasChar ? 0.143 : 0.0429) :
|
||||
0.0858;
|
||||
{"type":"usd","usd": $round($base * $n, 2)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -764,6 +764,33 @@ class KlingTextToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["mode"]),
|
||||
expr="""
|
||||
(
|
||||
$m := widgets.mode;
|
||||
$contains($m,"v2-5-turbo")
|
||||
? ($contains($m,"10") ? {"type":"usd","usd":0.7} : {"type":"usd","usd":0.35})
|
||||
: $contains($m,"v2-1-master")
|
||||
? ($contains($m,"10s") ? {"type":"usd","usd":2.8} : {"type":"usd","usd":1.4})
|
||||
: $contains($m,"v2-master")
|
||||
? ($contains($m,"10s") ? {"type":"usd","usd":2.8} : {"type":"usd","usd":1.4})
|
||||
: $contains($m,"v1-6")
|
||||
? (
|
||||
$contains($m,"pro")
|
||||
? ($contains($m,"10s") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49})
|
||||
: ($contains($m,"10s") ? {"type":"usd","usd":0.56} : {"type":"usd","usd":0.28})
|
||||
)
|
||||
: $contains($m,"v1")
|
||||
? (
|
||||
$contains($m,"pro")
|
||||
? ($contains($m,"10s") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49})
|
||||
: ($contains($m,"10s") ? {"type":"usd","usd":0.28} : {"type":"usd","usd":0.14})
|
||||
)
|
||||
: {"type":"usd","usd":0.14}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -818,6 +845,16 @@ class OmniProTextToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$mode := (widgets.resolution = "720p") ? "std" : "pro";
|
||||
$rates := {"std": 0.084, "pro": 0.112};
|
||||
{"type":"usd","usd": $lookup($rates, $mode) * widgets.duration}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -886,6 +923,16 @@ class OmniProFirstLastFrameNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$mode := (widgets.resolution = "720p") ? "std" : "pro";
|
||||
$rates := {"std": 0.084, "pro": 0.112};
|
||||
{"type":"usd","usd": $lookup($rates, $mode) * widgets.duration}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -981,6 +1028,16 @@ class OmniProImageToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$mode := (widgets.resolution = "720p") ? "std" : "pro";
|
||||
$rates := {"std": 0.084, "pro": 0.112};
|
||||
{"type":"usd","usd": $lookup($rates, $mode) * widgets.duration}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1056,6 +1113,16 @@ class OmniProVideoToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$mode := (widgets.resolution = "720p") ? "std" : "pro";
|
||||
$rates := {"std": 0.126, "pro": 0.168};
|
||||
{"type":"usd","usd": $lookup($rates, $mode) * widgets.duration}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1142,6 +1209,16 @@ class OmniProEditVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$mode := (widgets.resolution = "720p") ? "std" : "pro";
|
||||
$rates := {"std": 0.126, "pro": 0.168};
|
||||
{"type":"usd","usd": $lookup($rates, $mode), "format":{"suffix":"/second"}}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1228,6 +1305,9 @@ class OmniProImageNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.028}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1313,6 +1393,9 @@ class KlingCameraControlT2VNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.14}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1375,6 +1458,33 @@ class KlingImage2VideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["mode", "model_name", "duration"]),
|
||||
expr="""
|
||||
(
|
||||
$mode := widgets.mode;
|
||||
$model := widgets.model_name;
|
||||
$dur := widgets.duration;
|
||||
$contains($model,"v2-5-turbo")
|
||||
? ($contains($dur,"10") ? {"type":"usd","usd":0.7} : {"type":"usd","usd":0.35})
|
||||
: ($contains($model,"v2-1-master") or $contains($model,"v2-master"))
|
||||
? ($contains($dur,"10") ? {"type":"usd","usd":2.8} : {"type":"usd","usd":1.4})
|
||||
: ($contains($model,"v2-1") or $contains($model,"v1-6") or $contains($model,"v1-5"))
|
||||
? (
|
||||
$contains($mode,"pro")
|
||||
? ($contains($dur,"10") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49})
|
||||
: ($contains($dur,"10") ? {"type":"usd","usd":0.56} : {"type":"usd","usd":0.28})
|
||||
)
|
||||
: $contains($model,"v1")
|
||||
? (
|
||||
$contains($mode,"pro")
|
||||
? ($contains($dur,"10") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49})
|
||||
: ($contains($dur,"10") ? {"type":"usd","usd":0.28} : {"type":"usd","usd":0.14})
|
||||
)
|
||||
: {"type":"usd","usd":0.14}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1448,6 +1558,9 @@ class KlingCameraControlI2VNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.49}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1518,6 +1631,33 @@ class KlingStartEndFrameNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["mode"]),
|
||||
expr="""
|
||||
(
|
||||
$m := widgets.mode;
|
||||
$contains($m,"v2-5-turbo")
|
||||
? ($contains($m,"10") ? {"type":"usd","usd":0.7} : {"type":"usd","usd":0.35})
|
||||
: $contains($m,"v2-1")
|
||||
? ($contains($m,"10s") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49})
|
||||
: $contains($m,"v2-master")
|
||||
? ($contains($m,"10s") ? {"type":"usd","usd":2.8} : {"type":"usd","usd":1.4})
|
||||
: $contains($m,"v1-6")
|
||||
? (
|
||||
$contains($m,"pro")
|
||||
? ($contains($m,"10s") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49})
|
||||
: ($contains($m,"10s") ? {"type":"usd","usd":0.56} : {"type":"usd","usd":0.28})
|
||||
)
|
||||
: $contains($m,"v1")
|
||||
? (
|
||||
$contains($m,"pro")
|
||||
? ($contains($m,"10s") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49})
|
||||
: ($contains($m,"10s") ? {"type":"usd","usd":0.28} : {"type":"usd","usd":0.14})
|
||||
)
|
||||
: {"type":"usd","usd":0.14}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1583,6 +1723,9 @@ class KlingVideoExtendNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.28}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1664,6 +1807,29 @@ class KlingDualCharacterVideoEffectNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["mode", "model_name", "duration"]),
|
||||
expr="""
|
||||
(
|
||||
$mode := widgets.mode;
|
||||
$model := widgets.model_name;
|
||||
$dur := widgets.duration;
|
||||
($contains($model,"v1-6") or $contains($model,"v1-5"))
|
||||
? (
|
||||
$contains($mode,"pro")
|
||||
? ($contains($dur,"10") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49})
|
||||
: ($contains($dur,"10") ? {"type":"usd","usd":0.56} : {"type":"usd","usd":0.28})
|
||||
)
|
||||
: $contains($model,"v1")
|
||||
? (
|
||||
$contains($mode,"pro")
|
||||
? ($contains($dur,"10") ? {"type":"usd","usd":0.98} : {"type":"usd","usd":0.49})
|
||||
: ($contains($dur,"10") ? {"type":"usd","usd":0.28} : {"type":"usd","usd":0.14})
|
||||
)
|
||||
: {"type":"usd","usd":0.14}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1728,6 +1894,16 @@ class KlingSingleImageVideoEffectNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["effect_scene"]),
|
||||
expr="""
|
||||
(
|
||||
($contains(widgets.effect_scene,"dizzydizzy") or $contains(widgets.effect_scene,"bloombloom"))
|
||||
? {"type":"usd","usd":0.49}
|
||||
: {"type":"usd","usd":0.28}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1782,6 +1958,9 @@ class KlingLipSyncAudioToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.1,"format":{"approximate":true}}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1842,6 +2021,9 @@ class KlingLipSyncTextToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.1,"format":{"approximate":true}}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1892,6 +2074,9 @@ class KlingVirtualTryOnNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.7}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -1991,6 +2176,19 @@ class KlingImageGenerationNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model_name", "n"], inputs=["image"]),
|
||||
expr="""
|
||||
(
|
||||
$m := widgets.model_name;
|
||||
$base :=
|
||||
$contains($m,"kling-v1-5")
|
||||
? (inputs.image.connected ? 0.028 : 0.014)
|
||||
: ($contains($m,"kling-v1") ? 0.0035 : 0.014);
|
||||
{"type":"usd","usd": $base * widgets.n}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -2074,6 +2272,10 @@ class TextToVideoWithAudio(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration", "generate_audio"]),
|
||||
expr="""{"type":"usd","usd": 0.07 * widgets.duration * (widgets.generate_audio ? 2 : 1)}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -2138,6 +2340,10 @@ class ImageToVideoWithAudio(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration", "generate_audio"]),
|
||||
expr="""{"type":"usd","usd": 0.07 * widgets.duration * (widgets.generate_audio ? 2 : 1)}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -2218,6 +2424,15 @@ class MotionControl(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["mode"]),
|
||||
expr="""
|
||||
(
|
||||
$prices := {"std": 0.07, "pro": 0.112};
|
||||
{"type":"usd","usd": $lookup($prices, widgets.mode), "format":{"suffix":"/second"}}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -28,6 +28,22 @@ class ExecuteTaskRequest(BaseModel):
|
||||
image_uri: str | None = Field(None)
|
||||
|
||||
|
||||
PRICE_BADGE = IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model", "duration", "resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$prices := {
|
||||
"ltx-2 (pro)": {"1920x1080":0.06,"2560x1440":0.12,"3840x2160":0.24},
|
||||
"ltx-2 (fast)": {"1920x1080":0.04,"2560x1440":0.08,"3840x2160":0.16}
|
||||
};
|
||||
$modelPrices := $lookup($prices, $lowercase(widgets.model));
|
||||
$pps := $lookup($modelPrices, widgets.resolution);
|
||||
{"type":"usd","usd": $pps * widgets.duration}
|
||||
)
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
class TextToVideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -69,6 +85,7 @@ class TextToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=PRICE_BADGE,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -145,6 +162,7 @@ class ImageToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=PRICE_BADGE,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -189,6 +189,19 @@ class LumaImageGenerationNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model"]),
|
||||
expr="""
|
||||
(
|
||||
$m := widgets.model;
|
||||
$contains($m,"photon-flash-1")
|
||||
? {"type":"usd","usd":0.0027}
|
||||
: $contains($m,"photon-1")
|
||||
? {"type":"usd","usd":0.0104}
|
||||
: {"type":"usd","usd":0.0246}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -303,6 +316,19 @@ class LumaImageModifyNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model"]),
|
||||
expr="""
|
||||
(
|
||||
$m := widgets.model;
|
||||
$contains($m,"photon-flash-1")
|
||||
? {"type":"usd","usd":0.0027}
|
||||
: $contains($m,"photon-1")
|
||||
? {"type":"usd","usd":0.0104}
|
||||
: {"type":"usd","usd":0.0246}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -395,6 +421,7 @@ class LumaTextToVideoGenerationNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=PRICE_BADGE_VIDEO,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -505,6 +532,8 @@ class LumaImageToVideoGenerationNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=PRICE_BADGE_VIDEO,
|
||||
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -568,6 +597,53 @@ class LumaImageToVideoGenerationNode(IO.ComfyNode):
|
||||
return LumaKeyframes(frame0=frame0, frame1=frame1)
|
||||
|
||||
|
||||
PRICE_BADGE_VIDEO = IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model", "resolution", "duration"]),
|
||||
expr="""
|
||||
(
|
||||
$p := {
|
||||
"ray-flash-2": {
|
||||
"5s": {"4k":3.13,"1080p":0.79,"720p":0.34,"540p":0.2},
|
||||
"9s": {"4k":5.65,"1080p":1.42,"720p":0.61,"540p":0.36}
|
||||
},
|
||||
"ray-2": {
|
||||
"5s": {"4k":9.11,"1080p":2.27,"720p":1.02,"540p":0.57},
|
||||
"9s": {"4k":16.4,"1080p":4.1,"720p":1.83,"540p":1.03}
|
||||
}
|
||||
};
|
||||
|
||||
$m := widgets.model;
|
||||
$d := widgets.duration;
|
||||
$r := widgets.resolution;
|
||||
|
||||
$modelKey :=
|
||||
$contains($m,"ray-flash-2") ? "ray-flash-2" :
|
||||
$contains($m,"ray-2") ? "ray-2" :
|
||||
$contains($m,"ray-1-6") ? "ray-1-6" :
|
||||
"other";
|
||||
|
||||
$durKey := $contains($d,"5s") ? "5s" : $contains($d,"9s") ? "9s" : "";
|
||||
$resKey :=
|
||||
$contains($r,"4k") ? "4k" :
|
||||
$contains($r,"1080p") ? "1080p" :
|
||||
$contains($r,"720p") ? "720p" :
|
||||
$contains($r,"540p") ? "540p" : "";
|
||||
|
||||
$modelPrices := $lookup($p, $modelKey);
|
||||
$durPrices := $lookup($modelPrices, $durKey);
|
||||
$v := $lookup($durPrices, $resKey);
|
||||
|
||||
$price :=
|
||||
($modelKey = "ray-1-6") ? 0.5 :
|
||||
($modelKey = "other") ? 0.79 :
|
||||
($exists($v) ? $v : 0.79);
|
||||
|
||||
{"type":"usd","usd": $price}
|
||||
)
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
class LumaExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
|
||||
790
comfy_api_nodes/nodes_meshy.py
Normal file
790
comfy_api_nodes/nodes_meshy.py
Normal file
@ -0,0 +1,790 @@
|
||||
import os
|
||||
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api_nodes.apis.meshy import (
|
||||
InputShouldRemesh,
|
||||
InputShouldTexture,
|
||||
MeshyAnimationRequest,
|
||||
MeshyAnimationResult,
|
||||
MeshyImageToModelRequest,
|
||||
MeshyModelResult,
|
||||
MeshyMultiImageToModelRequest,
|
||||
MeshyRefineTask,
|
||||
MeshyRiggedResult,
|
||||
MeshyRiggingRequest,
|
||||
MeshyTaskResponse,
|
||||
MeshyTextToModelRequest,
|
||||
MeshyTextureRequest,
|
||||
)
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
download_url_to_bytesio,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_images_to_comfyapi,
|
||||
validate_string,
|
||||
)
|
||||
from folder_paths import get_output_directory
|
||||
|
||||
|
||||
class MeshyTextToModelNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyTextToModelNode",
|
||||
display_name="Meshy: Text to Model",
|
||||
category="api node/3d/Meshy",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.String.Input("prompt", multiline=True, default=""),
|
||||
IO.Combo.Input("style", options=["realistic", "sculpture"]),
|
||||
IO.DynamicCombo.Input(
|
||||
"should_remesh",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Combo.Input("topology", options=["triangle", "quad"]),
|
||||
IO.Int.Input(
|
||||
"target_polycount",
|
||||
default=300000,
|
||||
min=100,
|
||||
max=300000,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="When set to false, returns an unprocessed triangular mesh.",
|
||||
),
|
||||
IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]),
|
||||
IO.Combo.Input(
|
||||
"pose_mode",
|
||||
options=["", "A-pose", "T-pose"],
|
||||
tooltip="Specify the pose mode for the generated model.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.8}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
style: str,
|
||||
should_remesh: InputShouldRemesh,
|
||||
symmetry_mode: str,
|
||||
pose_mode: str,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, field_name="prompt", min_length=1, max_length=600)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/meshy/openapi/v2/text-to-3d", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyTextToModelRequest(
|
||||
prompt=prompt,
|
||||
art_style=style,
|
||||
ai_model=model,
|
||||
topology=should_remesh.get("topology", None),
|
||||
target_polycount=should_remesh.get("target_polycount", None),
|
||||
should_remesh=should_remesh["should_remesh"] == "true",
|
||||
symmetry_mode=symmetry_mode,
|
||||
pose_mode=pose_mode.lower(),
|
||||
seed=seed,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{response.result}"),
|
||||
response_model=MeshyModelResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyRefineNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyRefineNode",
|
||||
display_name="Meshy: Refine Draft Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Refine a previously created draft model.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
|
||||
IO.Boolean.Input(
|
||||
"enable_pbr",
|
||||
default=False,
|
||||
tooltip="Generate PBR Maps (metallic, roughness, normal) in addition to the base color. "
|
||||
"Note: this should be set to false when using Sculpture style, "
|
||||
"as Sculpture style generates its own set of PBR maps.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"texture_prompt",
|
||||
default="",
|
||||
multiline=True,
|
||||
tooltip="Provide a text prompt to guide the texturing process. "
|
||||
"Maximum 600 characters. Cannot be used at the same time as 'texture_image'.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"texture_image",
|
||||
tooltip="Only one of 'texture_image' or 'texture_prompt' may be used at the same time.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
meshy_task_id: str,
|
||||
enable_pbr: bool,
|
||||
texture_prompt: str,
|
||||
texture_image: Input.Image | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
if texture_prompt and texture_image is not None:
|
||||
raise ValueError("texture_prompt and texture_image cannot be used at the same time")
|
||||
texture_image_url = None
|
||||
if texture_prompt:
|
||||
validate_string(texture_prompt, field_name="texture_prompt", max_length=600)
|
||||
if texture_image is not None:
|
||||
texture_image_url = (await upload_images_to_comfyapi(cls, texture_image, wait_label="Uploading texture"))[0]
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v2/text-to-3d", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyRefineTask(
|
||||
preview_task_id=meshy_task_id,
|
||||
enable_pbr=enable_pbr,
|
||||
texture_prompt=texture_prompt if texture_prompt else None,
|
||||
texture_image_url=texture_image_url,
|
||||
ai_model=model,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{response.result}"),
|
||||
response_model=MeshyModelResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyImageToModelNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyImageToModelNode",
|
||||
display_name="Meshy: Image to Model",
|
||||
category="api node/3d/Meshy",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Image.Input("image"),
|
||||
IO.DynamicCombo.Input(
|
||||
"should_remesh",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Combo.Input("topology", options=["triangle", "quad"]),
|
||||
IO.Int.Input(
|
||||
"target_polycount",
|
||||
default=300000,
|
||||
min=100,
|
||||
max=300000,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="When set to false, returns an unprocessed triangular mesh.",
|
||||
),
|
||||
IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]),
|
||||
IO.DynamicCombo.Input(
|
||||
"should_texture",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Boolean.Input(
|
||||
"enable_pbr",
|
||||
default=False,
|
||||
tooltip="Generate PBR Maps (metallic, roughness, normal) "
|
||||
"in addition to the base color.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"texture_prompt",
|
||||
default="",
|
||||
multiline=True,
|
||||
tooltip="Provide a text prompt to guide the texturing process. "
|
||||
"Maximum 600 characters. Cannot be used at the same time as 'texture_image'.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"texture_image",
|
||||
tooltip="Only one of 'texture_image' or 'texture_prompt' "
|
||||
"may be used at the same time.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="Determines whether textures are generated. "
|
||||
"Setting it to false skips the texture phase and returns a mesh without textures.",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"pose_mode",
|
||||
options=["", "A-pose", "T-pose"],
|
||||
tooltip="Specify the pose mode for the generated model.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["should_texture"]),
|
||||
expr="""
|
||||
(
|
||||
$prices := {"true": 1.2, "false": 0.8};
|
||||
{"type":"usd","usd": $lookup($prices, widgets.should_texture)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
image: Input.Image,
|
||||
should_remesh: InputShouldRemesh,
|
||||
symmetry_mode: str,
|
||||
should_texture: InputShouldTexture,
|
||||
pose_mode: str,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
texture = should_texture["should_texture"] == "true"
|
||||
texture_image_url = texture_prompt = None
|
||||
if texture:
|
||||
if should_texture["texture_prompt"] and should_texture["texture_image"] is not None:
|
||||
raise ValueError("texture_prompt and texture_image cannot be used at the same time")
|
||||
if should_texture["texture_prompt"]:
|
||||
validate_string(should_texture["texture_prompt"], field_name="texture_prompt", max_length=600)
|
||||
texture_prompt = should_texture["texture_prompt"]
|
||||
if should_texture["texture_image"] is not None:
|
||||
texture_image_url = (
|
||||
await upload_images_to_comfyapi(
|
||||
cls, should_texture["texture_image"], wait_label="Uploading texture"
|
||||
)
|
||||
)[0]
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/meshy/openapi/v1/image-to-3d", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyImageToModelRequest(
|
||||
image_url=(await upload_images_to_comfyapi(cls, image, wait_label="Uploading base image"))[0],
|
||||
ai_model=model,
|
||||
topology=should_remesh.get("topology", None),
|
||||
target_polycount=should_remesh.get("target_polycount", None),
|
||||
symmetry_mode=symmetry_mode,
|
||||
should_remesh=should_remesh["should_remesh"] == "true",
|
||||
should_texture=texture,
|
||||
enable_pbr=should_texture.get("enable_pbr", None),
|
||||
pose_mode=pose_mode.lower(),
|
||||
texture_prompt=texture_prompt,
|
||||
texture_image_url=texture_image_url,
|
||||
seed=seed,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/image-to-3d/{response.result}"),
|
||||
response_model=MeshyModelResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyMultiImageToModelNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyMultiImageToModelNode",
|
||||
display_name="Meshy: Multi-Image to Model",
|
||||
category="api node/3d/Meshy",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Autogrow.Input(
|
||||
"images",
|
||||
template=IO.Autogrow.TemplatePrefix(IO.Image.Input("image"), prefix="image", min=2, max=4),
|
||||
),
|
||||
IO.DynamicCombo.Input(
|
||||
"should_remesh",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Combo.Input("topology", options=["triangle", "quad"]),
|
||||
IO.Int.Input(
|
||||
"target_polycount",
|
||||
default=300000,
|
||||
min=100,
|
||||
max=300000,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="When set to false, returns an unprocessed triangular mesh.",
|
||||
),
|
||||
IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]),
|
||||
IO.DynamicCombo.Input(
|
||||
"should_texture",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Boolean.Input(
|
||||
"enable_pbr",
|
||||
default=False,
|
||||
tooltip="Generate PBR Maps (metallic, roughness, normal) "
|
||||
"in addition to the base color.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"texture_prompt",
|
||||
default="",
|
||||
multiline=True,
|
||||
tooltip="Provide a text prompt to guide the texturing process. "
|
||||
"Maximum 600 characters. Cannot be used at the same time as 'texture_image'.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"texture_image",
|
||||
tooltip="Only one of 'texture_image' or 'texture_prompt' "
|
||||
"may be used at the same time.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="Determines whether textures are generated. "
|
||||
"Setting it to false skips the texture phase and returns a mesh without textures.",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"pose_mode",
|
||||
options=["", "A-pose", "T-pose"],
|
||||
tooltip="Specify the pose mode for the generated model.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["should_texture"]),
|
||||
expr="""
|
||||
(
|
||||
$prices := {"true": 0.6, "false": 0.2};
|
||||
{"type":"usd","usd": $lookup($prices, widgets.should_texture)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
images: IO.Autogrow.Type,
|
||||
should_remesh: InputShouldRemesh,
|
||||
symmetry_mode: str,
|
||||
should_texture: InputShouldTexture,
|
||||
pose_mode: str,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
texture = should_texture["should_texture"] == "true"
|
||||
texture_image_url = texture_prompt = None
|
||||
if texture:
|
||||
if should_texture["texture_prompt"] and should_texture["texture_image"] is not None:
|
||||
raise ValueError("texture_prompt and texture_image cannot be used at the same time")
|
||||
if should_texture["texture_prompt"]:
|
||||
validate_string(should_texture["texture_prompt"], field_name="texture_prompt", max_length=600)
|
||||
texture_prompt = should_texture["texture_prompt"]
|
||||
if should_texture["texture_image"] is not None:
|
||||
texture_image_url = (
|
||||
await upload_images_to_comfyapi(
|
||||
cls, should_texture["texture_image"], wait_label="Uploading texture"
|
||||
)
|
||||
)[0]
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/meshy/openapi/v1/multi-image-to-3d", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyMultiImageToModelRequest(
|
||||
image_urls=await upload_images_to_comfyapi(
|
||||
cls, list(images.values()), wait_label="Uploading base images"
|
||||
),
|
||||
ai_model=model,
|
||||
topology=should_remesh.get("topology", None),
|
||||
target_polycount=should_remesh.get("target_polycount", None),
|
||||
symmetry_mode=symmetry_mode,
|
||||
should_remesh=should_remesh["should_remesh"] == "true",
|
||||
should_texture=texture,
|
||||
enable_pbr=should_texture.get("enable_pbr", None),
|
||||
pose_mode=pose_mode.lower(),
|
||||
texture_prompt=texture_prompt,
|
||||
texture_image_url=texture_image_url,
|
||||
seed=seed,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/multi-image-to-3d/{response.result}"),
|
||||
response_model=MeshyModelResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyRigModelNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyRigModelNode",
|
||||
display_name="Meshy: Rig Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Provides a rigged character in standard formats. "
|
||||
"Auto-rigging is currently not suitable for untextured meshes, non-humanoid assets, "
|
||||
"or humanoid assets with unclear limb and body structure.",
|
||||
inputs=[
|
||||
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
|
||||
IO.Float.Input(
|
||||
"height_meters",
|
||||
min=0.1,
|
||||
max=15.0,
|
||||
default=1.7,
|
||||
tooltip="The approximate height of the character model in meters. "
|
||||
"This aids in scaling and rigging accuracy.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"texture_image",
|
||||
tooltip="The model's UV-unwrapped base color texture image.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MESHY_RIGGED_TASK_ID").Output(display_name="rig_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.2}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
meshy_task_id: str,
|
||||
height_meters: float,
|
||||
texture_image: Input.Image | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
texture_image_url = None
|
||||
if texture_image is not None:
|
||||
texture_image_url = (await upload_images_to_comfyapi(cls, texture_image, wait_label="Uploading texture"))[0]
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/rigging", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyRiggingRequest(
|
||||
input_task_id=meshy_task_id,
|
||||
height_meters=height_meters,
|
||||
texture_image_url=texture_image_url,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/rigging/{response.result}"),
|
||||
response_model=MeshyRiggedResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(
|
||||
result.result.rigged_character_glb_url, os.path.join(get_output_directory(), model_file)
|
||||
)
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyAnimateModelNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyAnimateModelNode",
|
||||
display_name="Meshy: Animate Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Apply a specific animation action to a previously rigged character.",
|
||||
inputs=[
|
||||
IO.Custom("MESHY_RIGGED_TASK_ID").Input("rig_task_id"),
|
||||
IO.Int.Input(
|
||||
"action_id",
|
||||
default=0,
|
||||
min=0,
|
||||
max=696,
|
||||
tooltip="Visit https://docs.meshy.ai/en/api/animation-library for a list of available values.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.12}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
rig_task_id: str,
|
||||
action_id: int,
|
||||
) -> IO.NodeOutput:
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/animations", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyAnimationRequest(
|
||||
rig_task_id=rig_task_id,
|
||||
action_id=action_id,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/animations/{response.result}"),
|
||||
response_model=MeshyAnimationResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.result.animation_glb_url, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyTextureNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyTextureNode",
|
||||
display_name="Meshy: Texture Model",
|
||||
category="api node/3d/Meshy",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
|
||||
IO.Boolean.Input(
|
||||
"enable_original_uv",
|
||||
default=True,
|
||||
tooltip="Use the original UV of the model instead of generating new UVs. "
|
||||
"When enabled, Meshy preserves existing textures from the uploaded model. "
|
||||
"If the model has no original UV, the quality of the output might not be as good.",
|
||||
),
|
||||
IO.Boolean.Input("pbr", default=False),
|
||||
IO.String.Input(
|
||||
"text_style_prompt",
|
||||
default="",
|
||||
multiline=True,
|
||||
tooltip="Describe your desired texture style of the object using text. Maximum 600 characters."
|
||||
"Maximum 600 characters. Cannot be used at the same time as 'image_style'.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"image_style",
|
||||
optional=True,
|
||||
tooltip="A 2d image to guide the texturing process. "
|
||||
"Can not be used at the same time with 'text_style_prompt'.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MODEL_TASK_ID").Output(display_name="meshy_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
meshy_task_id: str,
|
||||
enable_original_uv: bool,
|
||||
pbr: bool,
|
||||
text_style_prompt: str,
|
||||
image_style: Input.Image | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
if text_style_prompt and image_style is not None:
|
||||
raise ValueError("text_style_prompt and image_style cannot be used at the same time")
|
||||
if not text_style_prompt and image_style is None:
|
||||
raise ValueError("Either text_style_prompt or image_style is required")
|
||||
image_style_url = None
|
||||
if image_style is not None:
|
||||
image_style_url = (await upload_images_to_comfyapi(cls, image_style, wait_label="Uploading style"))[0]
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/retexture", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyTextureRequest(
|
||||
input_task_id=meshy_task_id,
|
||||
ai_model=model,
|
||||
enable_original_uv=enable_original_uv,
|
||||
enable_pbr=pbr,
|
||||
text_style_prompt=text_style_prompt if text_style_prompt else None,
|
||||
image_style_url=image_style_url,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/retexture/{response.result}"),
|
||||
response_model=MeshyModelResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
MeshyTextToModelNode,
|
||||
MeshyRefineNode,
|
||||
MeshyImageToModelNode,
|
||||
MeshyMultiImageToModelNode,
|
||||
MeshyRigModelNode,
|
||||
MeshyAnimateModelNode,
|
||||
MeshyTextureNode,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> MeshyExtension:
|
||||
return MeshyExtension()
|
||||
@ -134,6 +134,9 @@ class MinimaxTextToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.43}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -197,6 +200,9 @@ class MinimaxImageToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.43}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -340,6 +346,20 @@ class MinimaxHailuoVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["resolution", "duration"]),
|
||||
expr="""
|
||||
(
|
||||
$prices := {
|
||||
"768p": {"6": 0.28, "10": 0.56},
|
||||
"1080p": {"6": 0.49}
|
||||
};
|
||||
$resPrices := $lookup($prices, $lowercase(widgets.resolution));
|
||||
$price := $lookup($resPrices, $string(widgets.duration));
|
||||
{"type":"usd","usd": $price ? $price : 0.43}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -233,6 +233,10 @@ class MoonvalleyImg2VideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(),
|
||||
expr="""{"type":"usd","usd": 1.5}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -351,6 +355,10 @@ class MoonvalleyVideo2VideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(),
|
||||
expr="""{"type":"usd","usd": 2.25}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -471,6 +479,10 @@ class MoonvalleyTxt2VideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(),
|
||||
expr="""{"type":"usd","usd": 1.5}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -160,6 +160,23 @@ class OpenAIDalle2(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["size", "n"]),
|
||||
expr="""
|
||||
(
|
||||
$size := widgets.size;
|
||||
$nRaw := widgets.n;
|
||||
$n := ($nRaw != null and $nRaw != 0) ? $nRaw : 1;
|
||||
|
||||
$base :=
|
||||
$contains($size, "256x256") ? 0.016 :
|
||||
$contains($size, "512x512") ? 0.018 :
|
||||
0.02;
|
||||
|
||||
{"type":"usd","usd": $round($base * $n, 3)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -287,6 +304,25 @@ class OpenAIDalle3(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["size", "quality"]),
|
||||
expr="""
|
||||
(
|
||||
$size := widgets.size;
|
||||
$q := widgets.quality;
|
||||
$hd := $contains($q, "hd");
|
||||
|
||||
$price :=
|
||||
$contains($size, "1024x1024")
|
||||
? ($hd ? 0.08 : 0.04)
|
||||
: (($contains($size, "1792x1024") or $contains($size, "1024x1792"))
|
||||
? ($hd ? 0.12 : 0.08)
|
||||
: 0.04);
|
||||
|
||||
{"type":"usd","usd": $price}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -411,6 +447,28 @@ class OpenAIGPTImage1(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["quality", "n"]),
|
||||
expr="""
|
||||
(
|
||||
$ranges := {
|
||||
"low": [0.011, 0.02],
|
||||
"medium": [0.046, 0.07],
|
||||
"high": [0.167, 0.3]
|
||||
};
|
||||
$range := $lookup($ranges, widgets.quality);
|
||||
$n := widgets.n;
|
||||
($n = 1)
|
||||
? {"type":"range_usd","min_usd": $range[0], "max_usd": $range[1]}
|
||||
: {
|
||||
"type":"range_usd",
|
||||
"min_usd": $range[0],
|
||||
"max_usd": $range[1],
|
||||
"format": { "suffix": " x " & $string($n) & "/Run" }
|
||||
}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -566,6 +624,75 @@ class OpenAIChatNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model"]),
|
||||
expr="""
|
||||
(
|
||||
$m := widgets.model;
|
||||
$contains($m, "o4-mini") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.0011, 0.0044],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "o1-pro") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.15, 0.6],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "o1") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.015, 0.06],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "o3-mini") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.0011, 0.0044],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "o3") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.01, 0.04],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gpt-4o") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.0025, 0.01],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gpt-4.1-nano") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.0001, 0.0004],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gpt-4.1-mini") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.0004, 0.0016],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gpt-4.1") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.002, 0.008],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gpt-5-nano") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.00005, 0.0004],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gpt-5-mini") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.00025, 0.002],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gpt-5") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.00125, 0.01],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: {"type": "text", "text": "Token-based"}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -128,6 +128,7 @@ class PixverseTextToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=PRICE_BADGE_VIDEO,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -242,6 +243,7 @@ class PixverseImageToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=PRICE_BADGE_VIDEO,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -355,6 +357,7 @@ class PixverseTransitionVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=PRICE_BADGE_VIDEO,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -416,6 +419,33 @@ class PixverseTransitionVideoNode(IO.ComfyNode):
|
||||
return IO.NodeOutput(await download_url_to_video_output(response_poll.Resp.url))
|
||||
|
||||
|
||||
PRICE_BADGE_VIDEO = IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration_seconds", "quality", "motion_mode"]),
|
||||
expr="""
|
||||
(
|
||||
$prices := {
|
||||
"5": {
|
||||
"1080p": {"normal": 1.2, "fast": 1.2},
|
||||
"720p": {"normal": 0.6, "fast": 1.2},
|
||||
"540p": {"normal": 0.45, "fast": 0.9},
|
||||
"360p": {"normal": 0.45, "fast": 0.9}
|
||||
},
|
||||
"8": {
|
||||
"1080p": {"normal": 1.2, "fast": 1.2},
|
||||
"720p": {"normal": 1.2, "fast": 1.2},
|
||||
"540p": {"normal": 0.9, "fast": 1.2},
|
||||
"360p": {"normal": 0.9, "fast": 1.2}
|
||||
}
|
||||
};
|
||||
$durPrices := $lookup($prices, $string(widgets.duration_seconds));
|
||||
$qualityPrices := $lookup($durPrices, widgets.quality);
|
||||
$price := $lookup($qualityPrices, widgets.motion_mode);
|
||||
{"type":"usd","usd": $price ? $price : 0.9}
|
||||
)
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
class PixVerseExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
|
||||
@ -378,6 +378,10 @@ class RecraftTextToImageNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["n"]),
|
||||
expr="""{"type":"usd","usd": $round(0.04 * widgets.n, 2)}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -490,6 +494,10 @@ class RecraftImageToImageNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["n"]),
|
||||
expr="""{"type":"usd","usd": $round(0.04 * widgets.n, 2)}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -591,6 +599,10 @@ class RecraftImageInpaintingNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["n"]),
|
||||
expr="""{"type":"usd","usd": $round(0.04 * widgets.n, 2)}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -692,6 +704,10 @@ class RecraftTextToVectorNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["n"]),
|
||||
expr="""{"type":"usd","usd": $round(0.08 * widgets.n, 2)}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -759,6 +775,10 @@ class RecraftVectorizeImageNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(),
|
||||
expr="""{"type":"usd","usd": 0.01}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -817,6 +837,9 @@ class RecraftReplaceBackgroundNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.04}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -883,6 +906,9 @@ class RecraftRemoveBackgroundNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.01}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -929,6 +955,9 @@ class RecraftCrispUpscaleNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.004}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -972,6 +1001,9 @@ class RecraftCreativeUpscaleNode(RecraftCrispUpscaleNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.25}""",
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
|
||||
@ -241,6 +241,9 @@ class Rodin3D_Regular(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -294,6 +297,9 @@ class Rodin3D_Detail(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -347,6 +353,9 @@ class Rodin3D_Smooth(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -406,6 +415,9 @@ class Rodin3D_Sketch(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -184,6 +184,10 @@ class RunwayImageToVideoNodeGen3a(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration"]),
|
||||
expr="""{"type":"usd","usd": 0.0715 * widgets.duration}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -274,6 +278,10 @@ class RunwayImageToVideoNodeGen4(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration"]),
|
||||
expr="""{"type":"usd","usd": 0.0715 * widgets.duration}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -372,6 +380,10 @@ class RunwayFirstLastFrameNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration"]),
|
||||
expr="""{"type":"usd","usd": 0.0715 * widgets.duration}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -457,6 +469,9 @@ class RunwayTextToImageNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.11}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -89,6 +89,24 @@ class OpenAIVideoSora2(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model", "size", "duration"]),
|
||||
expr="""
|
||||
(
|
||||
$m := widgets.model;
|
||||
$size := widgets.size;
|
||||
$dur := widgets.duration;
|
||||
$isPro := $contains($m, "sora-2-pro");
|
||||
$isSora2 := $contains($m, "sora-2");
|
||||
$isProSize := ($size = "1024x1792" or $size = "1792x1024");
|
||||
$perSec :=
|
||||
$isPro ? ($isProSize ? 0.5 : 0.3) :
|
||||
$isSora2 ? 0.1 :
|
||||
($isProSize ? 0.5 : 0.1);
|
||||
{"type":"usd","usd": $round($perSec * $dur, 2)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -127,6 +127,9 @@ class StabilityStableImageUltraNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.08}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -264,6 +267,16 @@ class StabilityStableImageSD_3_5Node(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model"]),
|
||||
expr="""
|
||||
(
|
||||
$contains(widgets.model,"large")
|
||||
? {"type":"usd","usd":0.065}
|
||||
: {"type":"usd","usd":0.035}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -382,6 +395,9 @@ class StabilityUpscaleConservativeNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.25}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -486,6 +502,9 @@ class StabilityUpscaleCreativeNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.25}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -566,6 +585,9 @@ class StabilityUpscaleFastNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.01}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -648,6 +670,9 @@ class StabilityTextToAudio(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.2}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -732,6 +757,9 @@ class StabilityAudioToAudio(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.2}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -828,6 +856,9 @@ class StabilityAudioInpaint(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.2}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -117,6 +117,38 @@ class TripoTextToModelNode(IO.ComfyNode):
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(
|
||||
widgets=[
|
||||
"model_version",
|
||||
"style",
|
||||
"texture",
|
||||
"pbr",
|
||||
"quad",
|
||||
"texture_quality",
|
||||
"geometry_quality",
|
||||
],
|
||||
),
|
||||
expr="""
|
||||
(
|
||||
$isV14 := $contains(widgets.model_version,"v1.4");
|
||||
$style := widgets.style;
|
||||
$hasStyle := ($style != "" and $style != "none");
|
||||
$withTexture := widgets.texture or widgets.pbr;
|
||||
$isHdTexture := (widgets.texture_quality = "detailed");
|
||||
$isDetailedGeometry := (widgets.geometry_quality = "detailed");
|
||||
$baseCredits :=
|
||||
$isV14 ? 20 : ($withTexture ? 20 : 10);
|
||||
$credits :=
|
||||
$baseCredits
|
||||
+ ($hasStyle ? 5 : 0)
|
||||
+ (widgets.quad ? 5 : 0)
|
||||
+ ($isHdTexture ? 10 : 0)
|
||||
+ ($isDetailedGeometry ? 20 : 0);
|
||||
{"type":"usd","usd": $round($credits * 0.01, 2)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -210,6 +242,38 @@ class TripoImageToModelNode(IO.ComfyNode):
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(
|
||||
widgets=[
|
||||
"model_version",
|
||||
"style",
|
||||
"texture",
|
||||
"pbr",
|
||||
"quad",
|
||||
"texture_quality",
|
||||
"geometry_quality",
|
||||
],
|
||||
),
|
||||
expr="""
|
||||
(
|
||||
$isV14 := $contains(widgets.model_version,"v1.4");
|
||||
$style := widgets.style;
|
||||
$hasStyle := ($style != "" and $style != "none");
|
||||
$withTexture := widgets.texture or widgets.pbr;
|
||||
$isHdTexture := (widgets.texture_quality = "detailed");
|
||||
$isDetailedGeometry := (widgets.geometry_quality = "detailed");
|
||||
$baseCredits :=
|
||||
$isV14 ? 30 : ($withTexture ? 30 : 20);
|
||||
$credits :=
|
||||
$baseCredits
|
||||
+ ($hasStyle ? 5 : 0)
|
||||
+ (widgets.quad ? 5 : 0)
|
||||
+ ($isHdTexture ? 10 : 0)
|
||||
+ ($isDetailedGeometry ? 20 : 0);
|
||||
{"type":"usd","usd": $round($credits * 0.01, 2)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -314,6 +378,34 @@ class TripoMultiviewToModelNode(IO.ComfyNode):
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(
|
||||
widgets=[
|
||||
"model_version",
|
||||
"texture",
|
||||
"pbr",
|
||||
"quad",
|
||||
"texture_quality",
|
||||
"geometry_quality",
|
||||
],
|
||||
),
|
||||
expr="""
|
||||
(
|
||||
$isV14 := $contains(widgets.model_version,"v1.4");
|
||||
$withTexture := widgets.texture or widgets.pbr;
|
||||
$isHdTexture := (widgets.texture_quality = "detailed");
|
||||
$isDetailedGeometry := (widgets.geometry_quality = "detailed");
|
||||
$baseCredits :=
|
||||
$isV14 ? 30 : ($withTexture ? 30 : 20);
|
||||
$credits :=
|
||||
$baseCredits
|
||||
+ (widgets.quad ? 5 : 0)
|
||||
+ ($isHdTexture ? 10 : 0)
|
||||
+ ($isDetailedGeometry ? 20 : 0);
|
||||
{"type":"usd","usd": $round($credits * 0.01, 2)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -405,6 +497,15 @@ class TripoTextureNode(IO.ComfyNode):
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["texture_quality"]),
|
||||
expr="""
|
||||
(
|
||||
$tq := widgets.texture_quality;
|
||||
{"type":"usd","usd": ($contains($tq,"detailed") ? 0.2 : 0.1)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -456,6 +557,9 @@ class TripoRefineNode(IO.ComfyNode):
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.3}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -489,6 +593,9 @@ class TripoRigNode(IO.ComfyNode):
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.25}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -545,6 +652,9 @@ class TripoRetargetNode(IO.ComfyNode):
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.1}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -638,6 +748,60 @@ class TripoConversionNode(IO.ComfyNode):
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(
|
||||
widgets=[
|
||||
"quad",
|
||||
"face_limit",
|
||||
"texture_size",
|
||||
"texture_format",
|
||||
"force_symmetry",
|
||||
"flatten_bottom",
|
||||
"flatten_bottom_threshold",
|
||||
"pivot_to_center_bottom",
|
||||
"scale_factor",
|
||||
"with_animation",
|
||||
"pack_uv",
|
||||
"bake",
|
||||
"part_names",
|
||||
"fbx_preset",
|
||||
"export_vertex_colors",
|
||||
"export_orientation",
|
||||
"animate_in_place",
|
||||
],
|
||||
),
|
||||
expr="""
|
||||
(
|
||||
$face := (widgets.face_limit != null) ? widgets.face_limit : -1;
|
||||
$texSize := (widgets.texture_size != null) ? widgets.texture_size : 4096;
|
||||
$flatThresh := (widgets.flatten_bottom_threshold != null) ? widgets.flatten_bottom_threshold : 0;
|
||||
$scale := (widgets.scale_factor != null) ? widgets.scale_factor : 1;
|
||||
$texFmt := (widgets.texture_format != "" ? widgets.texture_format : "jpeg");
|
||||
$part := widgets.part_names;
|
||||
$fbx := (widgets.fbx_preset != "" ? widgets.fbx_preset : "blender");
|
||||
$orient := (widgets.export_orientation != "" ? widgets.export_orientation : "default");
|
||||
$advanced :=
|
||||
widgets.quad or
|
||||
widgets.force_symmetry or
|
||||
widgets.flatten_bottom or
|
||||
widgets.pivot_to_center_bottom or
|
||||
widgets.with_animation or
|
||||
widgets.pack_uv or
|
||||
widgets.bake or
|
||||
widgets.export_vertex_colors or
|
||||
widgets.animate_in_place or
|
||||
($face != -1) or
|
||||
($texSize != 4096) or
|
||||
($flatThresh != 0) or
|
||||
($scale != 1) or
|
||||
($texFmt != "jpeg") or
|
||||
($part != "") or
|
||||
($fbx != "blender") or
|
||||
($orient != "default");
|
||||
{"type":"usd","usd": ($advanced ? 0.1 : 0.05)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -122,6 +122,10 @@ class VeoVideoGenerationNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration_seconds"]),
|
||||
expr="""{"type":"usd","usd": 0.5 * widgets.duration_seconds}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -347,6 +351,20 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model", "generate_audio"]),
|
||||
expr="""
|
||||
(
|
||||
$m := widgets.model;
|
||||
$a := widgets.generate_audio;
|
||||
($contains($m,"veo-3.0-fast-generate-001") or $contains($m,"veo-3.1-fast-generate"))
|
||||
? {"type":"usd","usd": ($a ? 1.2 : 0.8)}
|
||||
: ($contains($m,"veo-3.0-generate-001") or $contains($m,"veo-3.1-generate"))
|
||||
? {"type":"usd","usd": ($a ? 3.2 : 1.6)}
|
||||
: {"type":"range_usd","min_usd":0.8,"max_usd":3.2}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@ -420,6 +438,30 @@ class Veo3FirstLastFrameNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model", "generate_audio", "duration"]),
|
||||
expr="""
|
||||
(
|
||||
$prices := {
|
||||
"veo-3.1-fast-generate": { "audio": 0.15, "no_audio": 0.10 },
|
||||
"veo-3.1-generate": { "audio": 0.40, "no_audio": 0.20 }
|
||||
};
|
||||
$m := widgets.model;
|
||||
$ga := (widgets.generate_audio = "true");
|
||||
$seconds := widgets.duration;
|
||||
$modelKey :=
|
||||
$contains($m, "veo-3.1-fast-generate") ? "veo-3.1-fast-generate" :
|
||||
$contains($m, "veo-3.1-generate") ? "veo-3.1-generate" :
|
||||
"";
|
||||
$audioKey := $ga ? "audio" : "no_audio";
|
||||
$modelPrices := $lookup($prices, $modelKey);
|
||||
$pps := $lookup($modelPrices, $audioKey);
|
||||
($pps != null)
|
||||
? {"type":"usd","usd": $pps * $seconds}
|
||||
: {"type":"range_usd","min_usd": 0.4, "max_usd": 3.2}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -121,6 +121,9 @@ class ViduTextToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -214,6 +217,9 @@ class ViduImageToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -317,6 +323,9 @@ class ViduReferenceVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -426,6 +435,9 @@ class ViduStartEndToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -507,6 +519,17 @@ class Vidu2TextToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$is1080 := widgets.resolution = "1080p";
|
||||
$base := $is1080 ? 0.1 : 0.075;
|
||||
$perSec := $is1080 ? 0.05 : 0.025;
|
||||
{"type":"usd","usd": $base + $perSec * (widgets.duration - 1)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -594,6 +617,39 @@ class Vidu2ImageToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model", "duration", "resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$m := widgets.model;
|
||||
$d := widgets.duration;
|
||||
$is1080 := widgets.resolution = "1080p";
|
||||
$contains($m, "pro-fast")
|
||||
? (
|
||||
$base := $is1080 ? 0.08 : 0.04;
|
||||
$perSec := $is1080 ? 0.02 : 0.01;
|
||||
{"type":"usd","usd": $base + $perSec * ($d - 1)}
|
||||
)
|
||||
: $contains($m, "pro")
|
||||
? (
|
||||
$base := $is1080 ? 0.275 : 0.075;
|
||||
$perSec := $is1080 ? 0.075 : 0.05;
|
||||
{"type":"usd","usd": $base + $perSec * ($d - 1)}
|
||||
)
|
||||
: $contains($m, "turbo")
|
||||
? (
|
||||
$is1080
|
||||
? {"type":"usd","usd": 0.175 + 0.05 * ($d - 1)}
|
||||
: (
|
||||
$d <= 1 ? {"type":"usd","usd": 0.04}
|
||||
: $d <= 2 ? {"type":"usd","usd": 0.05}
|
||||
: {"type":"usd","usd": 0.05 + 0.05 * ($d - 2)}
|
||||
)
|
||||
)
|
||||
: {"type":"usd","usd": 0.04}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -698,6 +754,18 @@ class Vidu2ReferenceVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["audio", "duration", "resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$is1080 := widgets.resolution = "1080p";
|
||||
$base := $is1080 ? 0.375 : 0.125;
|
||||
$perSec := $is1080 ? 0.05 : 0.025;
|
||||
$audioCost := widgets.audio = true ? 0.075 : 0;
|
||||
{"type":"usd","usd": $base + $perSec * (widgets.duration - 1) + $audioCost}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -804,6 +872,38 @@ class Vidu2StartEndToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model", "duration", "resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$m := widgets.model;
|
||||
$d := widgets.duration;
|
||||
$is1080 := widgets.resolution = "1080p";
|
||||
$contains($m, "pro-fast")
|
||||
? (
|
||||
$base := $is1080 ? 0.08 : 0.04;
|
||||
$perSec := $is1080 ? 0.02 : 0.01;
|
||||
{"type":"usd","usd": $base + $perSec * ($d - 1)}
|
||||
)
|
||||
: $contains($m, "pro")
|
||||
? (
|
||||
$base := $is1080 ? 0.275 : 0.075;
|
||||
$perSec := $is1080 ? 0.075 : 0.05;
|
||||
{"type":"usd","usd": $base + $perSec * ($d - 1)}
|
||||
)
|
||||
: $contains($m, "turbo")
|
||||
? (
|
||||
$is1080
|
||||
? {"type":"usd","usd": 0.175 + 0.05 * ($d - 1)}
|
||||
: (
|
||||
$d <= 2 ? {"type":"usd","usd": 0.05}
|
||||
: {"type":"usd","usd": 0.05 + 0.05 * ($d - 2)}
|
||||
)
|
||||
)
|
||||
: {"type":"usd","usd": 0.04}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -244,6 +244,9 @@ class WanTextToImageApi(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.03}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -363,6 +366,9 @@ class WanImageToImageApi(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.03}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -520,6 +526,17 @@ class WanTextToVideoApi(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration", "size"]),
|
||||
expr="""
|
||||
(
|
||||
$ppsTable := { "480p": 0.05, "720p": 0.1, "1080p": 0.15 };
|
||||
$resKey := $substringBefore(widgets.size, ":");
|
||||
$pps := $lookup($ppsTable, $resKey);
|
||||
{ "type": "usd", "usd": $round($pps * widgets.duration, 2) }
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -681,6 +698,16 @@ class WanImageToVideoApi(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]),
|
||||
expr="""
|
||||
(
|
||||
$ppsTable := { "480p": 0.05, "720p": 0.1, "1080p": 0.15 };
|
||||
$pps := $lookup($ppsTable, widgets.resolution);
|
||||
{ "type": "usd", "usd": $round($pps * widgets.duration, 2) }
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -828,6 +855,22 @@ class WanReferenceVideoApi(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["size", "duration"]),
|
||||
expr="""
|
||||
(
|
||||
$rate := $contains(widgets.size, "1080p") ? 0.15 : 0.10;
|
||||
$inputMin := 2 * $rate;
|
||||
$inputMax := 5 * $rate;
|
||||
$outputPrice := widgets.duration * $rate;
|
||||
{
|
||||
"type": "range_usd",
|
||||
"min_usd": $inputMin + $outputPrice,
|
||||
"max_usd": $inputMax + $outputPrice
|
||||
}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -43,7 +43,7 @@ class UploadResponse(BaseModel):
|
||||
|
||||
async def upload_images_to_comfyapi(
|
||||
cls: type[IO.ComfyNode],
|
||||
image: torch.Tensor,
|
||||
image: torch.Tensor | list[torch.Tensor],
|
||||
*,
|
||||
max_images: int = 8,
|
||||
mime_type: str | None = None,
|
||||
@ -55,15 +55,28 @@ async def upload_images_to_comfyapi(
|
||||
Uploads images to ComfyUI API and returns download URLs.
|
||||
To upload multiple images, stack them in the batch dimension first.
|
||||
"""
|
||||
tensors: list[torch.Tensor] = []
|
||||
if isinstance(image, list):
|
||||
for img in image:
|
||||
is_batch = len(img.shape) > 3
|
||||
if is_batch:
|
||||
tensors.extend(img[i] for i in range(img.shape[0]))
|
||||
else:
|
||||
tensors.append(img)
|
||||
else:
|
||||
is_batch = len(image.shape) > 3
|
||||
if is_batch:
|
||||
tensors.extend(image[i] for i in range(image.shape[0]))
|
||||
else:
|
||||
tensors.append(image)
|
||||
|
||||
# if batched, try to upload each file if max_images is greater than 0
|
||||
download_urls: list[str] = []
|
||||
is_batch = len(image.shape) > 3
|
||||
batch_len = image.shape[0] if is_batch else 1
|
||||
num_to_upload = min(batch_len, max_images)
|
||||
num_to_upload = min(len(tensors), max_images)
|
||||
batch_start_ts = time.monotonic()
|
||||
|
||||
for idx in range(num_to_upload):
|
||||
tensor = image[idx] if is_batch else image
|
||||
tensor = tensors[idx]
|
||||
img_io = tensor_to_bytesio(tensor, total_pixels=total_pixels, mime_type=mime_type)
|
||||
|
||||
effective_label = wait_label
|
||||
|
||||
@ -244,6 +244,10 @@ class ModelPatchLoader:
|
||||
elif 'control_all_x_embedder.2-1.weight' in sd: # alipai z image fun controlnet
|
||||
sd = z_image_convert(sd)
|
||||
config = {}
|
||||
if 'control_layers.4.adaLN_modulation.0.weight' not in sd:
|
||||
config['n_control_layers'] = 3
|
||||
config['additional_in_dim'] = 17
|
||||
config['refiner_control'] = True
|
||||
if 'control_layers.14.adaLN_modulation.0.weight' in sd:
|
||||
config['n_control_layers'] = 15
|
||||
config['additional_in_dim'] = 17
|
||||
|
||||
@ -254,6 +254,7 @@ class ResizeType(str, Enum):
|
||||
SCALE_HEIGHT = "scale height"
|
||||
SCALE_TOTAL_PIXELS = "scale total pixels"
|
||||
MATCH_SIZE = "match size"
|
||||
SCALE_TO_MULTIPLE = "scale to multiple"
|
||||
|
||||
def is_image(input: torch.Tensor) -> bool:
|
||||
# images have 4 dimensions: [batch, height, width, channels]
|
||||
@ -328,7 +329,7 @@ def scale_shorter_dimension(input: torch.Tensor, shorter_size: int, scale_method
|
||||
if height < width:
|
||||
width = round((width / height) * shorter_size)
|
||||
height = shorter_size
|
||||
elif width > height:
|
||||
elif width < height:
|
||||
height = round((height / width) * shorter_size)
|
||||
width = shorter_size
|
||||
else:
|
||||
@ -363,6 +364,43 @@ def scale_match_size(input: torch.Tensor, match: torch.Tensor, scale_method: str
|
||||
input = finalize_image_mask_input(input, is_type_image)
|
||||
return input
|
||||
|
||||
def scale_to_multiple_cover(input: torch.Tensor, multiple: int, scale_method: str) -> torch.Tensor:
|
||||
if multiple <= 1:
|
||||
return input
|
||||
is_type_image = is_image(input)
|
||||
if is_type_image:
|
||||
_, height, width, _ = input.shape
|
||||
else:
|
||||
_, height, width = input.shape
|
||||
target_w = (width // multiple) * multiple
|
||||
target_h = (height // multiple) * multiple
|
||||
if target_w == 0 or target_h == 0:
|
||||
return input
|
||||
if target_w == width and target_h == height:
|
||||
return input
|
||||
s_w = target_w / width
|
||||
s_h = target_h / height
|
||||
if s_w >= s_h:
|
||||
scaled_w = target_w
|
||||
scaled_h = int(math.ceil(height * s_w))
|
||||
if scaled_h < target_h:
|
||||
scaled_h = target_h
|
||||
else:
|
||||
scaled_h = target_h
|
||||
scaled_w = int(math.ceil(width * s_h))
|
||||
if scaled_w < target_w:
|
||||
scaled_w = target_w
|
||||
input = init_image_mask_input(input, is_type_image)
|
||||
input = comfy.utils.common_upscale(input, scaled_w, scaled_h, scale_method, "disabled")
|
||||
input = finalize_image_mask_input(input, is_type_image)
|
||||
x0 = (scaled_w - target_w) // 2
|
||||
y0 = (scaled_h - target_h) // 2
|
||||
x1 = x0 + target_w
|
||||
y1 = y0 + target_h
|
||||
if is_type_image:
|
||||
return input[:, y0:y1, x0:x1, :]
|
||||
return input[:, y0:y1, x0:x1]
|
||||
|
||||
class ResizeImageMaskNode(io.ComfyNode):
|
||||
|
||||
scale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
||||
@ -378,6 +416,7 @@ class ResizeImageMaskNode(io.ComfyNode):
|
||||
longer_size: int
|
||||
shorter_size: int
|
||||
megapixels: float
|
||||
multiple: int
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -417,6 +456,9 @@ class ResizeImageMaskNode(io.ComfyNode):
|
||||
io.MultiType.Input("match", [io.Image, io.Mask]),
|
||||
crop_combo,
|
||||
]),
|
||||
io.DynamicCombo.Option(ResizeType.SCALE_TO_MULTIPLE, [
|
||||
io.Int.Input("multiple", default=8, min=1, max=MAX_RESOLUTION, step=1),
|
||||
]),
|
||||
]),
|
||||
io.Combo.Input("scale_method", options=cls.scale_methods, default="area"),
|
||||
],
|
||||
@ -442,6 +484,8 @@ class ResizeImageMaskNode(io.ComfyNode):
|
||||
return io.NodeOutput(scale_total_pixels(input, resize_type["megapixels"], scale_method))
|
||||
elif selected_type == ResizeType.MATCH_SIZE:
|
||||
return io.NodeOutput(scale_match_size(input, resize_type["match"], scale_method, resize_type["crop"]))
|
||||
elif selected_type == ResizeType.SCALE_TO_MULTIPLE:
|
||||
return io.NodeOutput(scale_to_multiple_cover(input, resize_type["multiple"], scale_method))
|
||||
raise ValueError(f"Unsupported resize type: {selected_type}")
|
||||
|
||||
def batch_images(images: list[torch.Tensor]) -> torch.Tensor | None:
|
||||
|
||||
@ -1,3 +1,3 @@
|
||||
# This file is automatically generated by the build process when version is
|
||||
# updated in pyproject.toml.
|
||||
__version__ = "0.8.2"
|
||||
__version__ = "0.9.1"
|
||||
|
||||
5
nodes.py
5
nodes.py
@ -798,8 +798,8 @@ class VAELoader:
|
||||
vae_path = folder_paths.get_full_path_or_raise("vae_approx", vae_name)
|
||||
else:
|
||||
vae_path = folder_paths.get_full_path_or_raise("vae", vae_name)
|
||||
sd = comfy.utils.load_torch_file(vae_path)
|
||||
vae = comfy.sd.VAE(sd=sd)
|
||||
sd, metadata = comfy.utils.load_torch_file(vae_path, return_metadata=True)
|
||||
vae = comfy.sd.VAE(sd=sd, metadata=metadata)
|
||||
vae.throw_exception_if_invalid()
|
||||
return (vae,)
|
||||
|
||||
@ -2400,6 +2400,7 @@ async def init_builtin_api_nodes():
|
||||
"nodes_sora.py",
|
||||
"nodes_topaz.py",
|
||||
"nodes_tripo.py",
|
||||
"nodes_meshy.py",
|
||||
"nodes_moonvalley.py",
|
||||
"nodes_rodin.py",
|
||||
"nodes_gemini.py",
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "ComfyUI"
|
||||
version = "0.8.2"
|
||||
version = "0.9.1"
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE" }
|
||||
requires-python = ">=3.10"
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
comfyui-frontend-package==1.36.13
|
||||
comfyui-workflow-templates==0.7.69
|
||||
comfyui-frontend-package==1.36.14
|
||||
comfyui-workflow-templates==0.8.4
|
||||
comfyui-embedded-docs==0.4.0
|
||||
torch
|
||||
torchsde
|
||||
@ -21,7 +21,7 @@ psutil
|
||||
alembic
|
||||
SQLAlchemy
|
||||
av>=14.2.0
|
||||
comfy-kitchen>=0.2.5
|
||||
comfy-kitchen>=0.2.6
|
||||
|
||||
#non essential dependencies:
|
||||
kornia>=0.7.1
|
||||
|
||||
Loading…
Reference in New Issue
Block a user