mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-28 15:20:25 +08:00
Compare commits
4 Commits
858254a284
...
dd8cfaadfd
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
dd8cfaadfd | ||
|
|
c6238047ee | ||
|
|
69603be5d2 | ||
|
|
04c0dd0737 |
@ -183,7 +183,7 @@ Simply download, extract with [7-Zip](https://7-zip.org) or with the windows exp
|
||||
|
||||
If you have trouble extracting it, right click the file -> properties -> unblock
|
||||
|
||||
Update your Nvidia drivers if it doesn't start.
|
||||
The portable above currently comes with python 3.13 and pytorch cuda 13.0. Update your Nvidia drivers if it doesn't start.
|
||||
|
||||
#### Alternative Downloads:
|
||||
|
||||
@ -212,7 +212,7 @@ Python 3.14 works but you may encounter issues with the torch compile node. The
|
||||
|
||||
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
|
||||
|
||||
torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch unless it is less than 2 weeks old.
|
||||
torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch with the latest cuda version unless it is less than 2 weeks old.
|
||||
|
||||
### Instructions:
|
||||
|
||||
|
||||
@ -409,8 +409,137 @@ class LTXV(LatentFormat):
|
||||
|
||||
class LTXAV(LTXV):
|
||||
def __init__(self):
|
||||
self.latent_rgb_factors = None
|
||||
self.latent_rgb_factors_bias = None
|
||||
self.latent_rgb_factors = [
|
||||
[ 0.0350, 0.0159, 0.0132],
|
||||
[ 0.0025, -0.0021, -0.0003],
|
||||
[ 0.0286, 0.0028, 0.0020],
|
||||
[ 0.0280, -0.0114, -0.0202],
|
||||
[-0.0186, 0.0073, 0.0092],
|
||||
[ 0.0027, 0.0097, -0.0113],
|
||||
[-0.0069, -0.0032, -0.0024],
|
||||
[-0.0323, -0.0370, -0.0457],
|
||||
[ 0.0174, 0.0164, 0.0106],
|
||||
[-0.0097, 0.0061, 0.0035],
|
||||
[-0.0130, -0.0042, -0.0012],
|
||||
[-0.0102, -0.0002, -0.0091],
|
||||
[-0.0025, 0.0063, 0.0161],
|
||||
[ 0.0003, 0.0037, 0.0108],
|
||||
[ 0.0152, 0.0082, 0.0143],
|
||||
[ 0.0317, 0.0203, 0.0312],
|
||||
[-0.0092, -0.0233, -0.0119],
|
||||
[-0.0405, -0.0226, -0.0023],
|
||||
[ 0.0376, 0.0397, 0.0352],
|
||||
[ 0.0171, -0.0043, -0.0095],
|
||||
[ 0.0482, 0.0341, 0.0213],
|
||||
[ 0.0031, -0.0046, -0.0018],
|
||||
[-0.0486, -0.0383, -0.0294],
|
||||
[-0.0071, -0.0272, -0.0123],
|
||||
[ 0.0320, 0.0218, 0.0289],
|
||||
[ 0.0327, 0.0088, -0.0116],
|
||||
[-0.0098, -0.0240, -0.0111],
|
||||
[ 0.0094, -0.0116, 0.0021],
|
||||
[ 0.0309, 0.0092, 0.0165],
|
||||
[-0.0065, -0.0077, -0.0107],
|
||||
[ 0.0179, 0.0114, 0.0038],
|
||||
[-0.0018, -0.0030, -0.0026],
|
||||
[-0.0002, 0.0076, -0.0029],
|
||||
[-0.0131, -0.0059, -0.0170],
|
||||
[ 0.0055, 0.0066, -0.0038],
|
||||
[ 0.0154, 0.0063, 0.0090],
|
||||
[ 0.0186, 0.0175, 0.0188],
|
||||
[-0.0166, -0.0381, -0.0428],
|
||||
[ 0.0121, 0.0015, -0.0153],
|
||||
[ 0.0118, 0.0050, 0.0019],
|
||||
[ 0.0125, 0.0259, 0.0231],
|
||||
[ 0.0046, 0.0130, 0.0081],
|
||||
[ 0.0271, 0.0250, 0.0250],
|
||||
[-0.0054, -0.0347, -0.0326],
|
||||
[-0.0438, -0.0262, -0.0228],
|
||||
[-0.0191, -0.0256, -0.0173],
|
||||
[-0.0205, -0.0058, 0.0042],
|
||||
[ 0.0404, 0.0434, 0.0346],
|
||||
[-0.0242, -0.0177, -0.0146],
|
||||
[ 0.0161, 0.0223, 0.0168],
|
||||
[-0.0240, -0.0320, -0.0299],
|
||||
[-0.0019, 0.0043, 0.0008],
|
||||
[-0.0060, -0.0133, -0.0244],
|
||||
[-0.0048, -0.0225, -0.0167],
|
||||
[ 0.0267, 0.0133, 0.0152],
|
||||
[ 0.0222, 0.0167, 0.0028],
|
||||
[ 0.0015, -0.0062, 0.0013],
|
||||
[-0.0241, -0.0178, -0.0079],
|
||||
[ 0.0040, -0.0081, -0.0097],
|
||||
[-0.0064, 0.0133, -0.0011],
|
||||
[-0.0204, -0.0231, -0.0304],
|
||||
[ 0.0011, -0.0011, 0.0145],
|
||||
[-0.0283, -0.0259, -0.0260],
|
||||
[ 0.0038, 0.0171, -0.0029],
|
||||
[ 0.0637, 0.0424, 0.0409],
|
||||
[ 0.0092, 0.0163, 0.0188],
|
||||
[ 0.0082, 0.0055, -0.0179],
|
||||
[-0.0177, -0.0286, -0.0147],
|
||||
[ 0.0171, 0.0242, 0.0398],
|
||||
[-0.0129, 0.0095, -0.0071],
|
||||
[-0.0154, 0.0036, 0.0128],
|
||||
[-0.0081, -0.0009, 0.0118],
|
||||
[-0.0067, -0.0178, -0.0230],
|
||||
[-0.0022, -0.0125, -0.0003],
|
||||
[-0.0032, -0.0039, -0.0022],
|
||||
[-0.0005, -0.0127, -0.0131],
|
||||
[-0.0143, -0.0157, -0.0165],
|
||||
[-0.0262, -0.0263, -0.0270],
|
||||
[ 0.0063, 0.0127, 0.0178],
|
||||
[ 0.0092, 0.0133, 0.0150],
|
||||
[-0.0106, -0.0068, 0.0032],
|
||||
[-0.0214, -0.0022, 0.0171],
|
||||
[-0.0104, -0.0266, -0.0362],
|
||||
[ 0.0021, 0.0048, -0.0005],
|
||||
[ 0.0345, 0.0431, 0.0402],
|
||||
[-0.0275, -0.0110, -0.0195],
|
||||
[ 0.0203, 0.0251, 0.0224],
|
||||
[ 0.0016, -0.0037, -0.0094],
|
||||
[ 0.0241, 0.0198, 0.0114],
|
||||
[-0.0003, 0.0027, 0.0141],
|
||||
[ 0.0012, -0.0052, -0.0084],
|
||||
[ 0.0057, -0.0028, -0.0163],
|
||||
[-0.0488, -0.0545, -0.0509],
|
||||
[-0.0076, -0.0025, -0.0014],
|
||||
[-0.0249, -0.0142, -0.0367],
|
||||
[ 0.0136, 0.0041, 0.0135],
|
||||
[ 0.0007, 0.0034, -0.0053],
|
||||
[-0.0068, -0.0109, 0.0029],
|
||||
[ 0.0006, -0.0237, -0.0094],
|
||||
[-0.0149, -0.0177, -0.0131],
|
||||
[-0.0105, 0.0039, 0.0216],
|
||||
[ 0.0242, 0.0200, 0.0180],
|
||||
[-0.0339, -0.0153, -0.0195],
|
||||
[ 0.0104, 0.0151, 0.0120],
|
||||
[-0.0043, 0.0089, 0.0047],
|
||||
[ 0.0157, -0.0030, 0.0008],
|
||||
[ 0.0126, 0.0102, -0.0040],
|
||||
[ 0.0040, 0.0114, 0.0137],
|
||||
[ 0.0423, 0.0473, 0.0436],
|
||||
[-0.0128, -0.0066, -0.0152],
|
||||
[-0.0337, -0.0087, -0.0026],
|
||||
[-0.0052, 0.0235, 0.0291],
|
||||
[ 0.0079, 0.0154, 0.0260],
|
||||
[-0.0539, -0.0377, -0.0358],
|
||||
[-0.0188, 0.0062, -0.0035],
|
||||
[-0.0186, 0.0041, -0.0083],
|
||||
[ 0.0045, -0.0049, 0.0053],
|
||||
[ 0.0172, 0.0071, 0.0042],
|
||||
[-0.0003, -0.0078, -0.0096],
|
||||
[-0.0209, -0.0132, -0.0135],
|
||||
[-0.0074, 0.0017, 0.0099],
|
||||
[-0.0038, 0.0070, 0.0014],
|
||||
[-0.0013, -0.0017, 0.0073],
|
||||
[ 0.0030, 0.0105, 0.0105],
|
||||
[ 0.0154, -0.0168, -0.0235],
|
||||
[-0.0108, -0.0038, 0.0047],
|
||||
[-0.0298, -0.0347, -0.0436],
|
||||
[-0.0206, -0.0189, -0.0139]
|
||||
]
|
||||
self.latent_rgb_factors_bias = [0.2796, 0.1101, -0.0047]
|
||||
|
||||
class HunyuanVideo(LatentFormat):
|
||||
latent_channels = 16
|
||||
|
||||
@ -753,7 +753,7 @@ class SamplerCustom(io.ComfyNode):
|
||||
noise_mask = latent["noise_mask"]
|
||||
|
||||
x0_output = {}
|
||||
callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)
|
||||
callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output, shape=latent_image.shape if latent_image.is_nested else None)
|
||||
|
||||
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
|
||||
samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)
|
||||
@ -944,7 +944,7 @@ class SamplerCustomAdvanced(io.ComfyNode):
|
||||
noise_mask = latent["noise_mask"]
|
||||
|
||||
x0_output = {}
|
||||
callback = latent_preview.prepare_callback(guider.model_patcher, sigmas.shape[-1] - 1, x0_output)
|
||||
callback = latent_preview.prepare_callback(guider.model_patcher, sigmas.shape[-1] - 1, x0_output, shape=latent_image.shape if latent_image.is_nested else None)
|
||||
|
||||
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
|
||||
samples = guider.sample(noise.generate_noise(latent), latent_image, sampler, sigmas, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise.seed)
|
||||
|
||||
@ -7,6 +7,7 @@ import comfy.model_management
|
||||
import folder_paths
|
||||
import comfy.utils
|
||||
import logging
|
||||
import math
|
||||
|
||||
default_preview_method = args.preview_method
|
||||
|
||||
@ -109,7 +110,7 @@ def get_previewer(device, latent_format):
|
||||
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias, latent_format.latent_rgb_factors_reshape)
|
||||
return previewer
|
||||
|
||||
def prepare_callback(model, steps, x0_output_dict=None):
|
||||
def prepare_callback(model, steps, x0_output_dict=None, shape=None):
|
||||
preview_format = "JPEG"
|
||||
if preview_format not in ["JPEG", "PNG"]:
|
||||
preview_format = "JPEG"
|
||||
@ -121,6 +122,10 @@ def prepare_callback(model, steps, x0_output_dict=None):
|
||||
if x0_output_dict is not None:
|
||||
x0_output_dict["x0"] = x0
|
||||
|
||||
if shape is not None:
|
||||
cut = math.prod(shape[1:])
|
||||
x0 = x0[:, :, :cut].reshape([x0.shape[0]] + list(shape)[1:])
|
||||
|
||||
preview_bytes = None
|
||||
if previewer:
|
||||
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
|
||||
|
||||
2
nodes.py
2
nodes.py
@ -1505,7 +1505,7 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
||||
if "noise_mask" in latent:
|
||||
noise_mask = latent["noise_mask"]
|
||||
|
||||
callback = latent_preview.prepare_callback(model, steps)
|
||||
callback = latent_preview.prepare_callback(model, steps, shape=latent_image.shape if latent_image.is_nested else None)
|
||||
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
|
||||
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
||||
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
|
||||
|
||||
Loading…
Reference in New Issue
Block a user