Compare commits

..

1 Commits

Author SHA1 Message Date
DELUXA
b2bb7b2183
Merge 3988f37386 into 2c03884f5f 2026-01-06 16:55:47 -07:00
14 changed files with 37 additions and 231 deletions

View File

@ -117,7 +117,7 @@ jobs:
./python.exe get-pip.py
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
grep comfy ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
./python.exe -s -m pip install -r requirements_comfyui.txt
rm requirements_comfyui.txt

View File

@ -20,7 +20,6 @@ jobs:
test-stable:
strategy:
fail-fast: false
max-parallel: 1 # This forces sequential execution
matrix:
# os: [macos, linux, windows]
# os: [macos, linux]
@ -75,7 +74,6 @@ jobs:
test-unix-nightly:
strategy:
fail-fast: false
max-parallel: 1 # This forces sequential execution
matrix:
# os: [macos, linux]
os: [linux]

View File

@ -718,7 +718,6 @@ class ModelPatcher:
continue
cast_weight = self.force_cast_weights
m.comfy_force_cast_weights = self.force_cast_weights
if lowvram_weight:
if hasattr(m, "comfy_cast_weights"):
m.weight_function = []
@ -791,12 +790,11 @@ class ModelPatcher:
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
usable_stat = "{:.2f} MB usable,".format(lowvram_model_memory / (1024 * 1024)) if lowvram_model_memory < 1e32 else ""
if lowvram_counter > 0:
logging.info("loaded partially; {} {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(usable_stat, mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
self.model.model_lowvram = True
else:
logging.info("loaded completely; {} {:.2f} MB loaded, full load: {}".format(usable_stat, mem_counter / (1024 * 1024), full_load))
logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
self.model.model_lowvram = False
if full_load:
self.model.to(device_to)

View File

@ -427,12 +427,12 @@ def fp8_linear(self, input):
input = torch.clamp(input, min=-448, max=448, out=input)
input_fp8 = input.to(dtype).contiguous()
layout_params_input = TensorCoreFP8Layout.Params(scale=scale_input, orig_dtype=input_dtype, orig_shape=tuple(input_fp8.shape))
quantized_input = QuantizedTensor(input_fp8, "TensorCoreFP8Layout", layout_params_input)
quantized_input = QuantizedTensor(input_fp8, TensorCoreFP8Layout, layout_params_input)
# Wrap weight in QuantizedTensor - this enables unified dispatch
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
layout_params_weight = TensorCoreFP8Layout.Params(scale=scale_weight, orig_dtype=input_dtype, orig_shape=tuple(w.shape))
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
quantized_weight = QuantizedTensor(w, TensorCoreFP8Layout, layout_params_weight)
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
uncast_bias_weight(self, w, bias, offload_stream)
@ -654,29 +654,29 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
run_every_op()
input_shape = input.shape
reshaped_3d = False
tensor_3d = input.ndim == 3
if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(input, *args, **kwargs)
if (getattr(self, 'layout_type', None) is not None and
not isinstance(input, QuantizedTensor) and not self._full_precision_mm and
not getattr(self, 'comfy_force_cast_weights', False) and
len(self.weight_function) == 0 and len(self.bias_function) == 0):
not isinstance(input, QuantizedTensor)):
# Reshape 3D tensors to 2D for quantization (needed for NVFP4 and others)
input_reshaped = input.reshape(-1, input_shape[2]) if input.ndim == 3 else input
if tensor_3d:
input = input.reshape(-1, input_shape[2])
# Fall back to non-quantized for non-2D tensors
if input_reshaped.ndim == 2:
reshaped_3d = input.ndim == 3
# dtype is now implicit in the layout class
scale = getattr(self, 'input_scale', None)
if scale is not None:
scale = comfy.model_management.cast_to_device(scale, input.device, None)
input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale)
if input.ndim != 2:
# Fall back to comfy_cast_weights for non-2D tensors
return self.forward_comfy_cast_weights(input.reshape(input_shape), *args, **kwargs)
output = self.forward_comfy_cast_weights(input)
# dtype is now implicit in the layout class
input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None))
output = self._forward(input, self.weight, self.bias)
# Reshape output back to 3D if input was 3D
if reshaped_3d:
if tensor_3d:
output = output.reshape((input_shape[0], input_shape[1], self.weight.shape[0]))
return output

View File

@ -13,14 +13,6 @@ try:
get_layout_class,
)
_CK_AVAILABLE = True
if torch.version.cuda is None:
ck.registry.disable("cuda")
else:
cuda_version = tuple(map(int, str(torch.version.cuda).split('.')))
if cuda_version < (13,):
ck.registry.disable("cuda")
logging.warning("WARNING: You need pytorch with cu130 or higher to use optimized CUDA operations.")
ck.registry.disable("triton")
for k, v in ck.list_backends().items():
logging.info(f"Found comfy_kitchen backend {k}: {v}")

View File

@ -218,7 +218,7 @@ class CLIP:
if unprojected:
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model(tokens)
self.load_model()
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
all_hooks.reset()
self.patcher.patch_hooks(None)
@ -266,7 +266,7 @@ class CLIP:
if return_pooled == "unprojected":
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model(tokens)
self.load_model()
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
o = self.cond_stage_model.encode_token_weights(tokens)
cond, pooled = o[:2]
@ -299,11 +299,8 @@ class CLIP:
sd_clip[k] = sd_tokenizer[k]
return sd_clip
def load_model(self, tokens={}):
memory_used = 0
if hasattr(self.cond_stage_model, "memory_estimation_function"):
memory_used = self.cond_stage_model.memory_estimation_function(tokens, device=self.patcher.load_device)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
def load_model(self):
model_management.load_model_gpu(self.patcher)
return self.patcher
def get_key_patches(self):

View File

@ -845,7 +845,7 @@ class LTXAV(LTXV):
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = 0.061 # TODO
self.memory_usage_factor = 0.055 # TODO
def get_model(self, state_dict, prefix="", device=None):
out = model_base.LTXAV(self, device=device)

View File

@ -36,10 +36,10 @@ class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer):
class Gemma3_12BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None)
if llama_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
model_options["scaled_fp8"] = llama_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
@ -98,13 +98,10 @@ class LTXAVTEModel(torch.nn.Module):
out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs)
out_device = out.device
if comfy.model_management.should_use_bf16(self.execution_device):
out = out.to(device=self.execution_device, dtype=torch.bfloat16)
out = out.movedim(1, -1).to(self.execution_device)
out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6)
out = out.reshape((out.shape[0], out.shape[1], -1))
out = self.text_embedding_projection(out)
out = out.float()
out_vid = self.video_embeddings_connector(out)[0]
out_audio = self.audio_embeddings_connector(out)[0]
out = torch.concat((out_vid, out_audio), dim=-1)
@ -121,21 +118,13 @@ class LTXAVTEModel(torch.nn.Module):
return self.load_state_dict(sdo, strict=False)
def memory_estimation_function(self, token_weight_pairs, device=None):
constant = 6.0
if comfy.model_management.should_use_bf16(device):
constant /= 2.0
token_weight_pairs = token_weight_pairs.get("gemma3_12b", [])
num_tokens = sum(map(lambda a: len(a), token_weight_pairs))
return num_tokens * constant * 1024 * 1024
def ltxav_te(dtype_llama=None, llama_quantization_metadata=None):
def ltxav_te(dtype_llama=None, llama_scaled_fp8=None):
class LTXAVTEModel_(LTXAVTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_quantization_metadata is not None:
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["llama_quantization_metadata"] = llama_quantization_metadata
model_options["llama_scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)

View File

@ -13,9 +13,7 @@ from comfy_api_nodes.util import (
poll_op,
sync_op,
tensor_to_base64_string,
upload_video_to_comfyapi,
validate_audio_duration,
validate_video_duration,
)
@ -43,12 +41,6 @@ class Image2VideoInputField(BaseModel):
audio_url: str | None = Field(None)
class Reference2VideoInputField(BaseModel):
prompt: str = Field(...)
negative_prompt: str | None = Field(None)
reference_video_urls: list[str] = Field(...)
class Txt2ImageParametersField(BaseModel):
size: str = Field(...)
n: int = Field(1, description="Number of images to generate.") # we support only value=1
@ -84,14 +76,6 @@ class Image2VideoParametersField(BaseModel):
shot_type: str = Field("single")
class Reference2VideoParametersField(BaseModel):
size: str = Field(...)
duration: int = Field(5, ge=5, le=15)
shot_type: str = Field("single")
seed: int = Field(..., ge=0, le=2147483647)
watermark: bool = Field(False)
class Text2ImageTaskCreationRequest(BaseModel):
model: str = Field(...)
input: Text2ImageInputField = Field(...)
@ -116,12 +100,6 @@ class Image2VideoTaskCreationRequest(BaseModel):
parameters: Image2VideoParametersField = Field(...)
class Reference2VideoTaskCreationRequest(BaseModel):
model: str = Field(...)
input: Reference2VideoInputField = Field(...)
parameters: Reference2VideoParametersField = Field(...)
class TaskCreationOutputField(BaseModel):
task_id: str = Field(...)
task_status: str = Field(...)
@ -743,143 +721,6 @@ class WanImageToVideoApi(IO.ComfyNode):
return IO.NodeOutput(await download_url_to_video_output(response.output.video_url))
class WanReferenceVideoApi(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="WanReferenceVideoApi",
display_name="Wan Reference to Video",
category="api node/video/Wan",
description="Use the character and voice from input videos, combined with a prompt, "
"to generate a new video that maintains character consistency.",
inputs=[
IO.Combo.Input("model", options=["wan2.6-r2v"]),
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Prompt describing the elements and visual features. Supports English and Chinese. "
"Use identifiers such as `character1` and `character2` to refer to the reference characters.",
),
IO.String.Input(
"negative_prompt",
multiline=True,
default="",
tooltip="Negative prompt describing what to avoid.",
),
IO.Autogrow.Input(
"reference_videos",
template=IO.Autogrow.TemplateNames(
IO.Video.Input("reference_video"),
names=["character1", "character2", "character3"],
min=1,
),
),
IO.Combo.Input(
"size",
options=[
"720p: 1:1 (960x960)",
"720p: 16:9 (1280x720)",
"720p: 9:16 (720x1280)",
"720p: 4:3 (1088x832)",
"720p: 3:4 (832x1088)",
"1080p: 1:1 (1440x1440)",
"1080p: 16:9 (1920x1080)",
"1080p: 9:16 (1080x1920)",
"1080p: 4:3 (1632x1248)",
"1080p: 3:4 (1248x1632)",
],
),
IO.Int.Input(
"duration",
default=5,
min=5,
max=10,
step=5,
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
),
IO.Combo.Input(
"shot_type",
options=["single", "multi"],
tooltip="Specifies the shot type for the generated video, that is, whether the video is a "
"single continuous shot or multiple shots with cuts.",
),
IO.Boolean.Input(
"watermark",
default=False,
tooltip="Whether to add an AI-generated watermark to the result.",
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
negative_prompt: str,
reference_videos: IO.Autogrow.Type,
size: str,
duration: int,
seed: int,
shot_type: str,
watermark: bool,
):
reference_video_urls = []
for i in reference_videos:
validate_video_duration(reference_videos[i], min_duration=2, max_duration=30)
for i in reference_videos:
reference_video_urls.append(await upload_video_to_comfyapi(cls, reference_videos[i]))
width, height = RES_IN_PARENS.search(size).groups()
initial_response = await sync_op(
cls,
ApiEndpoint(path="/proxy/wan/api/v1/services/aigc/video-generation/video-synthesis", method="POST"),
response_model=TaskCreationResponse,
data=Reference2VideoTaskCreationRequest(
model=model,
input=Reference2VideoInputField(
prompt=prompt, negative_prompt=negative_prompt, reference_video_urls=reference_video_urls
),
parameters=Reference2VideoParametersField(
size=f"{width}*{height}",
duration=duration,
shot_type=shot_type,
watermark=watermark,
seed=seed,
),
),
)
if not initial_response.output:
raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}")
response = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"),
response_model=VideoTaskStatusResponse,
status_extractor=lambda x: x.output.task_status,
poll_interval=6,
max_poll_attempts=280,
)
return IO.NodeOutput(await download_url_to_video_output(response.output.video_url))
class WanApiExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
@ -888,7 +729,6 @@ class WanApiExtension(ComfyExtension):
WanImageToImageApi,
WanTextToVideoApi,
WanImageToVideoApi,
WanReferenceVideoApi,
]

View File

@ -119,7 +119,7 @@ async def upload_video_to_comfyapi(
raise ValueError(f"Could not verify video duration from source: {e}") from e
upload_mime_type = f"video/{container.value.lower()}"
filename = f"{uuid.uuid4()}.{container.value.lower()}"
filename = f"uploaded_video.{container.value.lower()}"
# Convert VideoInput to BytesIO using specified container/codec
video_bytes_io = BytesIO()

View File

@ -185,10 +185,6 @@ class LTXAVTextEncoderLoader(io.ComfyNode):
io.Combo.Input(
"ckpt_name",
options=folder_paths.get_filename_list("checkpoints"),
),
io.Combo.Input(
"device",
options=["default", "cpu"],
)
],
outputs=[io.Clip.Output()],
@ -201,11 +197,7 @@ class LTXAVTextEncoderLoader(io.ComfyNode):
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder)
clip_path2 = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
model_options = {}
if device == "cpu":
model_options["load_device"] = model_options["offload_device"] = torch.device("cpu")
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options)
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
return io.NodeOutput(clip)

View File

@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.8.1"
__version__ = "0.7.0"

View File

@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.8.1"
version = "0.7.0"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.10"

View File

@ -1,5 +1,5 @@
comfyui-frontend-package==1.35.9
comfyui-workflow-templates==0.7.69
comfyui-workflow-templates==0.7.67
comfyui-embedded-docs==0.3.1
torch
torchsde
@ -21,7 +21,7 @@ psutil
alembic
SQLAlchemy
av>=14.2.0
comfy-kitchen>=0.2.5
comfy-kitchen>=0.2.2
#non essential dependencies:
kornia>=0.7.1