Compare commits

...

16 Commits

Author SHA1 Message Date
Jedrzej Kosinski
c4c6d4a44b
Merge 7484c9c237 into 66e1b07402 2026-02-03 17:24:02 +09:00
comfyanonymous
66e1b07402 ComfyUI v0.12.0 2026-02-03 02:20:59 -05:00
ComfyUI Wiki
be4345d1c9
chore: update workflow templates to v0.8.31 (#12239) 2026-02-02 23:08:43 -08:00
comfyanonymous
3c1a1a2df8
Basic support for the ace step 1.5 model. (#12237) 2026-02-03 00:06:18 -05:00
Alexander Piskun
ba5bf3f1a8
[API Nodes] HitPaw API nodes (#12117)
* feat(api-nodes): add HitPaw API nodes

* remove face_soft_2x model as not working

---------

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>
2026-02-02 19:17:59 -08:00
comfyanonymous
c05a08ae66
Add back function. (#12234)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
2026-02-02 19:52:07 -05:00
rattus
de9ada6a41
Dynamic VRAM unloading fix (#12227)
* mp: fix full dynamic unloading

This was not unloading dynamic models when requesting a full unload via
the unpatch() code path.

This was ok, i your workflow was all dynamic models but fails with big
VRAM leaks if you need to fully unload something for a regular ModelPatcher

It also fices the "unload models" button.

* mm: load models outside of Aimdo Mempool

In dynamic_vram mode, escape the Aimdo mempool and load into the regular
mempool. Use a dummy thread to do it.
2026-02-02 17:35:20 -05:00
rattus
37f711d4a1
mm: Fix cast buffers with intel offloading (#12229)
Intel has offloading support but there were some nvidia calls in the
new cast buffer stuff.
2026-02-02 17:34:46 -05:00
comfyanonymous
dd86b15521
Enable embeddings for some qwen 3 models. (#12218)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
2026-02-02 03:51:09 -05:00
Jedrzej Kosinski
7484c9c237 Fix test ndoe replacement for resize_type.multiplier field
Some checks failed
Python Linting / Run Ruff (push) Has been cancelled
Python Linting / Run Pylint (push) Has been cancelled
2026-01-30 02:56:48 -08:00
Jedrzej Kosinski
8adafb4d65 Create some test replacements for frontend testing purposes 2026-01-30 02:53:30 -08:00
Jedrzej Kosinski
3c0365f6d6 Rename UseValue to SetValue
Some checks failed
Python Linting / Run Ruff (push) Has been cancelled
Python Linting / Run Pylint (push) Has been cancelled
2026-01-22 16:53:51 -08:00
Jedrzej Kosinski
9c7d5f1fdd Added old_widget_ids param to NodeReplace
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
2026-01-22 03:26:52 -08:00
Jedrzej Kosinski
2c37119ff8 Merge branch 'master' into jk/node-replace-api 2026-01-22 02:11:00 -08:00
Jedrzej Kosinski
191834c633 Add public register_node_replacement function to node_replace, add NodeReplaceManager + GET /api/node_replacements 2026-01-21 17:52:58 -08:00
Jedrzej Kosinski
5faf2e3cfd Create helper classes for node replace registration 2026-01-21 16:36:02 -08:00
30 changed files with 2190 additions and 30 deletions

View File

@ -0,0 +1,23 @@
from __future__ import annotations
from aiohttp import web
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy_api.latest._node_replace import NodeReplace
REGISTERED_NODE_REPLACEMENTS: dict[str, list[NodeReplace]] = {}
def register_node_replacement(node_replace: NodeReplace):
REGISTERED_NODE_REPLACEMENTS.setdefault(node_replace.old_node_id, []).append(node_replace)
def registered_as_dict():
return {
k: [v.as_dict() for v in v_list] for k, v_list in REGISTERED_NODE_REPLACEMENTS.items()
}
class NodeReplaceManager:
def add_routes(self, routes):
@routes.get("/node_replacements")
async def get_node_replacements(request):
return web.json_response(registered_as_dict())

View File

@ -755,6 +755,10 @@ class ACEAudio(LatentFormat):
latent_channels = 8
latent_dimensions = 2
class ACEAudio15(LatentFormat):
latent_channels = 64
latent_dimensions = 1
class ChromaRadiance(LatentFormat):
latent_channels = 3
spacial_downscale_ratio = 1

1093
comfy/ldm/ace/ace_step15.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -50,6 +50,7 @@ import comfy.ldm.omnigen.omnigen2
import comfy.ldm.qwen_image.model
import comfy.ldm.kandinsky5.model
import comfy.ldm.anima.model
import comfy.ldm.ace.ace_step15
import comfy.model_management
import comfy.patcher_extension
@ -1540,6 +1541,47 @@ class ACEStep(BaseModel):
out['lyrics_strength'] = comfy.conds.CONDConstant(kwargs.get("lyrics_strength", 1.0))
return out
class ACEStep15(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.ace.ace_step15.AceStepConditionGenerationModel)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
device = kwargs["device"]
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_lyrics = kwargs.get("conditioning_lyrics", None)
if cross_attn is not None:
out['lyric_embed'] = comfy.conds.CONDRegular(conditioning_lyrics)
refer_audio = kwargs.get("reference_audio_timbre_latents", None)
if refer_audio is None or len(refer_audio) == 0:
refer_audio = torch.tensor([[[-1.3672e-01, -1.5820e-01, 5.8594e-01, -5.7422e-01, 3.0273e-02,
2.7930e-01, -2.5940e-03, -2.0703e-01, -1.6113e-01, -1.4746e-01,
-2.7710e-02, -1.8066e-01, -2.9688e-01, 1.6016e+00, -2.6719e+00,
7.7734e-01, -1.3516e+00, -1.9434e-01, -7.1289e-02, -5.0938e+00,
2.4316e-01, 4.7266e-01, 4.6387e-02, -6.6406e-01, -2.1973e-01,
-6.7578e-01, -1.5723e-01, 9.5312e-01, -2.0020e-01, -1.7109e+00,
5.8984e-01, -5.7422e-01, 5.1562e-01, 2.8320e-01, 1.4551e-01,
-1.8750e-01, -5.9814e-02, 3.6719e-01, -1.0059e-01, -1.5723e-01,
2.0605e-01, -4.3359e-01, -8.2812e-01, 4.5654e-02, -6.6016e-01,
1.4844e-01, 9.4727e-02, 3.8477e-01, -1.2578e+00, -3.3203e-01,
-8.5547e-01, 4.3359e-01, 4.2383e-01, -8.9453e-01, -5.0391e-01,
-5.6152e-02, -2.9219e+00, -2.4658e-02, 5.0391e-01, 9.8438e-01,
7.2754e-02, -2.1582e-01, 6.3672e-01, 1.0000e+00]]], device=device).movedim(-1, 1).repeat(1, 1, 750)
else:
refer_audio = refer_audio[-1]
out['refer_audio'] = comfy.conds.CONDRegular(refer_audio)
audio_codes = kwargs.get("audio_codes", None)
if audio_codes is not None:
out['audio_codes'] = comfy.conds.CONDRegular(torch.tensor(audio_codes, device=device))
return out
class Omnigen2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.omnigen.omnigen2.OmniGen2Transformer2DModel)

View File

@ -655,6 +655,11 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["num_visual_blocks"] = count_blocks(state_dict_keys, '{}visual_transformer_blocks.'.format(key_prefix) + '{}.')
return dit_config
if '{}encoder.lyric_encoder.layers.0.input_layernorm.weight'.format(key_prefix) in state_dict_keys:
dit_config = {}
dit_config["audio_model"] = "ace1.5"
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None

View File

@ -19,7 +19,8 @@
import psutil
import logging
from enum import Enum
from comfy.cli_args import args, PerformanceFeature
from comfy.cli_args import args, PerformanceFeature, enables_dynamic_vram
import threading
import torch
import sys
import platform
@ -650,7 +651,7 @@ def free_memory(memory_required, device, keep_loaded=[], for_dynamic=False, ram_
soft_empty_cache()
return unloaded_models
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
def load_models_gpu_orig(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
cleanup_models_gc()
global vram_state
@ -746,6 +747,26 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
current_loaded_models.insert(0, loaded_model)
return
def load_models_gpu_thread(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load):
with torch.inference_mode():
load_models_gpu_orig(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load)
soft_empty_cache()
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
#Deliberately load models outside of the Aimdo mempool so they can be retained accross
#nodes. Use a dummy thread to do it as pytorch documents that mempool contexts are
#thread local. So exploit that to escape context
if enables_dynamic_vram():
t = threading.Thread(
target=load_models_gpu_thread,
args=(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load)
)
t.start()
t.join()
else:
load_models_gpu_orig(models, memory_required=memory_required, force_patch_weights=force_patch_weights,
minimum_memory_required=minimum_memory_required, force_full_load=force_full_load)
def load_model_gpu(model):
return load_models_gpu([model])
@ -1112,11 +1133,11 @@ def get_cast_buffer(offload_stream, device, size, ref):
return None
if cast_buffer is not None and cast_buffer.numel() > 50 * (1024 ** 2):
#I want my wrongly sized 50MB+ of VRAM back from the caching allocator right now
torch.cuda.synchronize()
synchronize()
del STREAM_CAST_BUFFERS[offload_stream]
del cast_buffer
#FIXME: This doesn't work in Aimdo because mempool cant clear cache
torch.cuda.empty_cache()
soft_empty_cache()
with wf_context:
cast_buffer = torch.empty((size), dtype=torch.int8, device=device)
STREAM_CAST_BUFFERS[offload_stream] = cast_buffer
@ -1132,9 +1153,7 @@ def reset_cast_buffers():
for offload_stream in STREAM_CAST_BUFFERS:
offload_stream.synchronize()
STREAM_CAST_BUFFERS.clear()
if comfy.memory_management.aimdo_allocator is None:
#Pytorch 2.7 and earlier crashes if you try and empty_cache when mempools exist
torch.cuda.empty_cache()
soft_empty_cache()
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
@ -1284,7 +1303,7 @@ def discard_cuda_async_error():
a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
_ = a + b
torch.cuda.synchronize()
synchronize()
except torch.AcceleratorError:
#Dump it! We already know about it from the synchronous return
pass
@ -1688,6 +1707,12 @@ def lora_compute_dtype(device):
LORA_COMPUTE_DTYPES[device] = dtype
return dtype
def synchronize():
if is_intel_xpu():
torch.xpu.synchronize()
elif torch.cuda.is_available():
torch.cuda.synchronize()
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:
@ -1713,9 +1738,6 @@ def debug_memory_summary():
return torch.cuda.memory.memory_summary()
return ""
#TODO: might be cleaner to put this somewhere else
import threading
class InterruptProcessingException(Exception):
pass

View File

@ -1597,7 +1597,7 @@ class ModelPatcherDynamic(ModelPatcher):
if unpatch_weights:
self.partially_unload_ram(1e32)
self.partially_unload(None)
self.partially_unload(None, 1e32)
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
assert not force_patch_weights #See above

View File

@ -59,6 +59,7 @@ import comfy.text_encoders.kandinsky5
import comfy.text_encoders.jina_clip_2
import comfy.text_encoders.newbie
import comfy.text_encoders.anima
import comfy.text_encoders.ace15
import comfy.model_patcher
import comfy.lora
@ -452,6 +453,8 @@ class VAE:
self.extra_1d_channel = None
self.crop_input = True
self.audio_sample_rate = 44100
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
@ -549,14 +552,25 @@ class VAE:
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
elif "decoder.layers.1.layers.0.beta" in sd:
self.first_stage_model = AudioOobleckVAE()
config = {}
param_key = None
if "decoder.layers.2.layers.1.weight_v" in sd:
param_key = "decoder.layers.2.layers.1.weight_v"
if "decoder.layers.2.layers.1.parametrizations.weight.original1" in sd:
param_key = "decoder.layers.2.layers.1.parametrizations.weight.original1"
if param_key is not None:
if sd[param_key].shape[-1] == 12:
config["strides"] = [2, 4, 4, 6, 10]
self.audio_sample_rate = 48000
self.first_stage_model = AudioOobleckVAE(**config)
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
self.latent_channels = 64
self.output_channels = 2
self.pad_channel_value = "replicate"
self.upscale_ratio = 2048
self.downscale_ratio = 2048
self.downscale_ratio = 2048
self.latent_dim = 1
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
@ -1427,6 +1441,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_data_jina = clip_data[0]
tokenizer_data["gemma_spiece_model"] = clip_data_gemma.get("spiece_model", None)
tokenizer_data["jina_spiece_model"] = clip_data_jina.get("spiece_model", None)
elif clip_type == CLIPType.ACE:
clip_target.clip = comfy.text_encoders.ace15.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.ace15.ACE15Tokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer

View File

@ -155,6 +155,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.execution_device = options.get("execution_device", self.execution_device)
if isinstance(self.layer, list) or self.layer == "all":
pass
elif isinstance(layer_idx, list):
self.layer = layer_idx
elif layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
else:

View File

@ -24,6 +24,7 @@ import comfy.text_encoders.hunyuan_image
import comfy.text_encoders.kandinsky5
import comfy.text_encoders.z_image
import comfy.text_encoders.anima
import comfy.text_encoders.ace15
from . import supported_models_base
from . import latent_formats
@ -1596,6 +1597,38 @@ class Kandinsky5Image(Kandinsky5):
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, LTXAV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5, Anima]
class ACEStep15(supported_models_base.BASE):
unet_config = {
"audio_model": "ace1.5",
}
unet_extra_config = {
}
sampling_settings = {
"multiplier": 1.0,
"shift": 3.0,
}
latent_format = comfy.latent_formats.ACEAudio15
memory_usage_factor = 4.7
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.ACEStep15(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_2b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.ace15.ACE15Tokenizer, comfy.text_encoders.ace15.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, LTXAV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, ACEStep15, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5, Anima]
models += [SVD_img2vid]

View File

@ -0,0 +1,218 @@
from .anima import Qwen3Tokenizer
import comfy.text_encoders.llama
from comfy import sd1_clip
import torch
import math
def sample_manual_loop_no_classes(
model,
ids=None,
paddings=[],
execution_dtype=None,
cfg_scale: float = 2.0,
temperature: float = 0.85,
top_p: float = 0.9,
top_k: int = None,
seed: int = 1,
min_tokens: int = 1,
max_new_tokens: int = 2048,
audio_start_id: int = 151669, # The cutoff ID for audio codes
eos_token_id: int = 151645,
):
device = model.execution_device
if execution_dtype is None:
if comfy.model_management.should_use_bf16(device):
execution_dtype = torch.bfloat16
else:
execution_dtype = torch.float32
embeds, attention_mask, num_tokens, embeds_info = model.process_tokens(ids, device)
for i, t in enumerate(paddings):
attention_mask[i, :t] = 0
attention_mask[i, t:] = 1
output_audio_codes = []
past_key_values = []
generator = torch.Generator(device=device)
generator.manual_seed(seed)
model_config = model.transformer.model.config
for x in range(model_config.num_hidden_layers):
past_key_values.append((torch.empty([embeds.shape[0], model_config.num_key_value_heads, embeds.shape[1] + min_tokens, model_config.head_dim], device=device, dtype=execution_dtype), torch.empty([embeds.shape[0], model_config.num_key_value_heads, embeds.shape[1] + min_tokens, model_config.head_dim], device=device, dtype=execution_dtype), 0))
for step in range(max_new_tokens):
outputs = model.transformer(None, attention_mask, embeds=embeds.to(execution_dtype), num_tokens=num_tokens, intermediate_output=None, dtype=execution_dtype, embeds_info=embeds_info, past_key_values=past_key_values)
next_token_logits = model.transformer.logits(outputs[0])[:, -1]
past_key_values = outputs[2]
cond_logits = next_token_logits[0:1]
uncond_logits = next_token_logits[1:2]
cfg_logits = uncond_logits + cfg_scale * (cond_logits - uncond_logits)
if eos_token_id is not None and eos_token_id < audio_start_id and min_tokens < step:
eos_score = cfg_logits[:, eos_token_id].clone()
# Only generate audio tokens
cfg_logits[:, :audio_start_id] = float('-inf')
if eos_token_id is not None and eos_token_id < audio_start_id and min_tokens < step:
cfg_logits[:, eos_token_id] = eos_score
if top_k is not None and top_k > 0:
top_k_vals, _ = torch.topk(cfg_logits, top_k)
min_val = top_k_vals[..., -1, None]
cfg_logits[cfg_logits < min_val] = float('-inf')
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(cfg_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
cfg_logits[indices_to_remove] = float('-inf')
if temperature > 0:
cfg_logits = cfg_logits / temperature
next_token = torch.multinomial(torch.softmax(cfg_logits, dim=-1), num_samples=1, generator=generator).squeeze(1)
else:
next_token = torch.argmax(cfg_logits, dim=-1)
token = next_token.item()
if token == eos_token_id:
break
embed, _, _, _ = model.process_tokens([[token]], device)
embeds = embed.repeat(2, 1, 1)
attention_mask = torch.cat([attention_mask, torch.ones((2, 1), device=device, dtype=attention_mask.dtype)], dim=1)
output_audio_codes.append(token - audio_start_id)
return output_audio_codes
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0):
cfg_scale = 2.0
positive = [[token for token, _ in inner_list] for inner_list in positive]
negative = [[token for token, _ in inner_list] for inner_list in negative]
positive = positive[0]
negative = negative[0]
neg_pad = 0
if len(negative) < len(positive):
neg_pad = (len(positive) - len(negative))
negative = [model.special_tokens["pad"]] * neg_pad + negative
pos_pad = 0
if len(negative) > len(positive):
pos_pad = (len(negative) - len(positive))
positive = [model.special_tokens["pad"]] * pos_pad + positive
paddings = [pos_pad, neg_pad]
return sample_manual_loop_no_classes(model, [positive, negative], paddings, cfg_scale=cfg_scale, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_06b", tokenizer=Qwen3Tokenizer)
def tokenize_with_weights(self, text, return_word_ids=False, **kwargs):
out = {}
lyrics = kwargs.get("lyrics", "")
bpm = kwargs.get("bpm", 120)
duration = kwargs.get("duration", 120)
keyscale = kwargs.get("keyscale", "C major")
timesignature = kwargs.get("timesignature", 2)
language = kwargs.get("language", "en")
seed = kwargs.get("seed", 0)
duration = math.ceil(duration)
meta_lm = 'bpm: {}\nduration: {}\nkeyscale: {}\ntimesignature: {}'.format(bpm, duration, keyscale, timesignature)
lm_template = "<|im_start|>system\n# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n<|im_end|>\n<|im_start|>user\n# Caption\n{}\n{}\n<|im_end|>\n<|im_start|>assistant\n<think>\n{}\n</think>\n\n<|im_end|>\n"
meta_cap = '- bpm: {}\n- timesignature: {}\n- keyscale: {}\n- duration: {}\n'.format(bpm, timesignature, keyscale, duration)
out["lm_prompt"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, meta_lm), disable_weights=True)
out["lm_prompt_negative"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, ""), disable_weights=True)
out["lyrics"] = self.qwen3_06b.tokenize_with_weights("# Languages\n{}\n\n# Lyric{}<|endoftext|><|endoftext|>".format(language, lyrics), return_word_ids, disable_weights=True, **kwargs)
out["qwen3_06b"] = self.qwen3_06b.tokenize_with_weights("# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n# Caption\n{}# Metas\n{}<|endoftext|>\n<|endoftext|>".format(text, meta_cap), return_word_ids, **kwargs)
out["lm_metadata"] = {"min_tokens": duration * 5, "seed": seed}
return out
class Qwen3_06BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_06B_ACE15, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Qwen3_2B_ACE15(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_2B_ACE15_lm, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class ACE15TEModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, dtype_llama=None, model_options={}):
super().__init__()
if dtype_llama is None:
dtype_llama = dtype
self.qwen3_06b = Qwen3_06BModel(device=device, dtype=dtype, model_options=model_options)
self.qwen3_2b = Qwen3_2B_ACE15(device=device, dtype=dtype_llama, model_options=model_options)
self.dtypes = set([dtype, dtype_llama])
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_base = token_weight_pairs["qwen3_06b"]
token_weight_pairs_lyrics = token_weight_pairs["lyrics"]
self.qwen3_06b.set_clip_options({"layer": None})
base_out, _, extra = self.qwen3_06b.encode_token_weights(token_weight_pairs_base)
self.qwen3_06b.set_clip_options({"layer": [0]})
lyrics_embeds, _, extra_l = self.qwen3_06b.encode_token_weights(token_weight_pairs_lyrics)
lm_metadata = token_weight_pairs["lm_metadata"]
audio_codes = generate_audio_codes(self.qwen3_2b, token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"])
return base_out, None, {"conditioning_lyrics": lyrics_embeds[:, 0], "audio_codes": [audio_codes]}
def set_clip_options(self, options):
self.qwen3_06b.set_clip_options(options)
self.qwen3_2b.set_clip_options(options)
def reset_clip_options(self):
self.qwen3_06b.reset_clip_options()
self.qwen3_2b.reset_clip_options()
def load_sd(self, sd):
if "model.layers.0.post_attention_layernorm.weight" in sd:
shape = sd["model.layers.0.post_attention_layernorm.weight"].shape
if shape[0] == 1024:
return self.qwen3_06b.load_sd(sd)
else:
return self.qwen3_2b.load_sd(sd)
def memory_estimation_function(self, token_weight_pairs, device=None):
lm_metadata = token_weight_pairs["lm_metadata"]
constant = 0.4375
if comfy.model_management.should_use_bf16(device):
constant *= 0.5
token_weight_pairs = token_weight_pairs.get("lm_prompt", [])
num_tokens = sum(map(lambda a: len(a), token_weight_pairs))
num_tokens += lm_metadata['min_tokens']
return num_tokens * constant * 1024 * 1024
def te(dtype_llama=None, llama_quantization_metadata=None):
class ACE15TEModel_(ACE15TEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["llama_quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, dtype_llama=dtype_llama, dtype=dtype, model_options=model_options)
return ACE15TEModel_

View File

@ -8,7 +8,7 @@ import torch
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='qwen3_06b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024, embedding_key='qwen3_06b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@ -118,7 +118,7 @@ class MistralTokenizerClass:
class Mistral3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.tekken_data = tokenizer_data.get("tekken_model", None)
super().__init__("", pad_with_end=False, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, start_token=1, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
super().__init__("", pad_with_end=False, embedding_directory=embedding_directory, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, start_token=1, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
def state_dict(self):
return {"tekken_model": self.tekken_data}
@ -176,12 +176,12 @@ def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False):
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
class Qwen3Tokenizer8B(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='qwen3_8b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=4096, embedding_key='qwen3_8b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
class KleinTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, name="qwen3_4b"):

View File

@ -103,6 +103,52 @@ class Qwen3_06BConfig:
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_06B_ACE15_Config:
vocab_size: int = 151669
hidden_size: int = 1024
intermediate_size: int = 3072
num_hidden_layers: int = 28
num_attention_heads: int = 16
num_key_value_heads: int = 8
max_position_embeddings: int = 32768
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_2B_ACE15_lm_Config:
vocab_size: int = 217204
hidden_size: int = 2048
intermediate_size: int = 6144
num_hidden_layers: int = 28
num_attention_heads: int = 16
num_key_value_heads: int = 8
max_position_embeddings: int = 40960
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_4BConfig:
vocab_size: int = 151936
@ -729,6 +775,27 @@ class Qwen3_06B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_06B_ACE15(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_06B_ACE15_Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_2B_ACE15_lm(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_2B_ACE15_lm_Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
def logits(self, x):
return torch.nn.functional.linear(x[:, -1:], self.model.embed_tokens.weight.to(x), None)
class Qwen3_4B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()

View File

@ -6,7 +6,7 @@ import os
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class ZImageTokenizer(sd1_clip.SD1Tokenizer):

View File

@ -10,6 +10,7 @@ from ._input_impl import VideoFromFile, VideoFromComponents
from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL
from . import _io_public as io
from . import _ui_public as ui
from . import _node_replace_public as node_replace
from comfy_execution.utils import get_executing_context
from comfy_execution.progress import get_progress_state, PreviewImageTuple
from PIL import Image
@ -130,4 +131,5 @@ __all__ = [
"IO",
"ui",
"UI",
"node_replace",
]

View File

@ -0,0 +1,109 @@
from __future__ import annotations
from typing import Any
import app.node_replace_manager
def register_node_replacement(node_replace: NodeReplace):
"""
Register node replacement.
"""
app.node_replace_manager.register_node_replacement(node_replace)
class NodeReplace:
"""
Defines a possible node replacement, mapping inputs and outputs of the old node to the new node.
Also supports assigning specific values to the input widgets of the new node.
"""
def __init__(self,
new_node_id: str,
old_node_id: str,
old_widget_ids: list[str] | None=None,
input_mapping: list[InputMap] | None=None,
output_mapping: list[OutputMap] | None=None,
):
self.new_node_id = new_node_id
self.old_node_id = old_node_id
self.old_widget_ids = old_widget_ids
self.input_mapping = input_mapping
self.output_mapping = output_mapping
def as_dict(self):
"""
Create serializable representation of the node replacement.
"""
return {
"new_node_id": self.new_node_id,
"old_node_id": self.old_node_id,
"old_widget_ids": self.old_widget_ids,
"input_mapping": [m.as_dict() for m in self.input_mapping] if self.input_mapping else None,
"output_mapping": [m.as_dict() for m in self.output_mapping] if self.output_mapping else None,
}
class InputMap:
"""
Map inputs of node replacement.
Use InputMap.OldId or InputMap.SetValue for mapping purposes.
"""
class _Assign:
def __init__(self, assign_type: str):
self.assign_type = assign_type
def as_dict(self):
return {
"assign_type": self.assign_type,
}
class OldId(_Assign):
"""
Connect the input of the old node with given id to new node when replacing.
"""
def __init__(self, old_id: str):
super().__init__("old_id")
self.old_id = old_id
def as_dict(self):
return super().as_dict() | {
"old_id": self.old_id,
}
class SetValue(_Assign):
"""
Use the given value for the input of the new node when replacing; assumes input is a widget.
"""
def __init__(self, value: Any):
super().__init__("set_value")
self.value = value
def as_dict(self):
return super().as_dict() | {
"value": self.value,
}
def __init__(self, new_id: str, assign: OldId | SetValue):
self.new_id = new_id
self.assign = assign
def as_dict(self):
return {
"new_id": self.new_id,
"assign": self.assign.as_dict(),
}
class OutputMap:
"""
Map outputs of node replacement via indexes, as that's how outputs are stored.
"""
def __init__(self, new_idx: int, old_idx: int):
self.new_idx = new_idx
self.old_idx = old_idx
def as_dict(self):
return {
"new_idx": self.new_idx,
"old_idx": self.old_idx,
}

View File

@ -0,0 +1 @@
from ._node_replace import * # noqa: F403

View File

@ -6,7 +6,7 @@ from comfy_api.latest import (
)
from typing import Type, TYPE_CHECKING
from comfy_api.internal.async_to_sync import create_sync_class
from comfy_api.latest import io, ui, IO, UI, ComfyExtension #noqa: F401
from comfy_api.latest import io, ui, IO, UI, ComfyExtension, node_replace #noqa: F401
class ComfyAPIAdapter_v0_0_2(ComfyAPI_latest):
@ -46,4 +46,5 @@ __all__ = [
"IO",
"ui",
"UI",
"node_replace",
]

View File

@ -0,0 +1,51 @@
from typing import TypedDict
from pydantic import BaseModel, Field
class InputVideoModel(TypedDict):
model: str
resolution: str
class ImageEnhanceTaskCreateRequest(BaseModel):
model_name: str = Field(...)
img_url: str = Field(...)
extension: str = Field(".png")
exif: bool = Field(False)
DPI: int | None = Field(None)
class VideoEnhanceTaskCreateRequest(BaseModel):
video_url: str = Field(...)
extension: str = Field(".mp4")
model_name: str | None = Field(...)
resolution: list[int] = Field(..., description="Target resolution [width, height]")
original_resolution: list[int] = Field(..., description="Original video resolution [width, height]")
class TaskCreateDataResponse(BaseModel):
job_id: str = Field(...)
consume_coins: int | None = Field(None)
class TaskStatusPollRequest(BaseModel):
job_id: str = Field(...)
class TaskCreateResponse(BaseModel):
code: int = Field(...)
message: str = Field(...)
data: TaskCreateDataResponse | None = Field(None)
class TaskStatusDataResponse(BaseModel):
job_id: str = Field(...)
status: str = Field(...)
res_url: str = Field("")
class TaskStatusResponse(BaseModel):
code: int = Field(...)
message: str = Field(...)
data: TaskStatusDataResponse = Field(...)

View File

@ -0,0 +1,342 @@
import math
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api_nodes.apis.hitpaw import (
ImageEnhanceTaskCreateRequest,
InputVideoModel,
TaskCreateDataResponse,
TaskCreateResponse,
TaskStatusPollRequest,
TaskStatusResponse,
VideoEnhanceTaskCreateRequest,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_image_tensor,
download_url_to_video_output,
downscale_image_tensor,
get_image_dimensions,
poll_op,
sync_op,
upload_image_to_comfyapi,
upload_video_to_comfyapi,
validate_video_duration,
)
VIDEO_MODELS_MODELS_MAP = {
"Portrait Restore Model (1x)": "portrait_restore_1x",
"Portrait Restore Model (2x)": "portrait_restore_2x",
"General Restore Model (1x)": "general_restore_1x",
"General Restore Model (2x)": "general_restore_2x",
"General Restore Model (4x)": "general_restore_4x",
"Ultra HD Model (2x)": "ultrahd_restore_2x",
"Generative Model (1x)": "generative_1x",
}
# Resolution name to target dimension (shorter side) in pixels
RESOLUTION_TARGET_MAP = {
"720p": 720,
"1080p": 1080,
"2K/QHD": 1440,
"4K/UHD": 2160,
"8K": 4320,
}
# Square (1:1) resolutions use standard square dimensions
RESOLUTION_SQUARE_MAP = {
"720p": 720,
"1080p": 1080,
"2K/QHD": 1440,
"4K/UHD": 2048, # DCI 4K square
"8K": 4096, # DCI 8K square
}
# Models with limited resolution support (no 8K)
LIMITED_RESOLUTION_MODELS = {"Generative Model (1x)"}
# Resolution options for different model types
RESOLUTIONS_LIMITED = ["original", "720p", "1080p", "2K/QHD", "4K/UHD"]
RESOLUTIONS_FULL = ["original", "720p", "1080p", "2K/QHD", "4K/UHD", "8K"]
# Maximum output resolution in pixels
MAX_PIXELS_GENERATIVE = 32_000_000
MAX_MP_GENERATIVE = MAX_PIXELS_GENERATIVE // 1_000_000
class HitPawGeneralImageEnhance(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="HitPawGeneralImageEnhance",
display_name="HitPaw General Image Enhance",
category="api node/image/HitPaw",
description="Upscale low-resolution images to super-resolution, eliminate artifacts and noise. "
f"Maximum output: {MAX_MP_GENERATIVE} megapixels.",
inputs=[
IO.Combo.Input("model", options=["generative_portrait", "generative"]),
IO.Image.Input("image"),
IO.Combo.Input("upscale_factor", options=[1, 2, 4]),
IO.Boolean.Input(
"auto_downscale",
default=False,
tooltip="Automatically downscale input image if output would exceed the limit.",
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["model"]),
expr="""
(
$prices := {
"generative_portrait": {"min": 0.02, "max": 0.06},
"generative": {"min": 0.05, "max": 0.15}
};
$price := $lookup($prices, widgets.model);
{
"type": "range_usd",
"min_usd": $price.min,
"max_usd": $price.max
}
)
""",
),
)
@classmethod
async def execute(
cls,
model: str,
image: Input.Image,
upscale_factor: int,
auto_downscale: bool,
) -> IO.NodeOutput:
height, width = get_image_dimensions(image)
requested_scale = upscale_factor
output_pixels = height * width * requested_scale * requested_scale
if output_pixels > MAX_PIXELS_GENERATIVE:
if auto_downscale:
input_pixels = width * height
scale = 1
max_input_pixels = MAX_PIXELS_GENERATIVE
for candidate in [4, 2, 1]:
if candidate > requested_scale:
continue
scale_output_pixels = input_pixels * candidate * candidate
if scale_output_pixels <= MAX_PIXELS_GENERATIVE:
scale = candidate
max_input_pixels = None
break
# Check if we can downscale input by at most 2x to fit
downscale_ratio = math.sqrt(scale_output_pixels / MAX_PIXELS_GENERATIVE)
if downscale_ratio <= 2.0:
scale = candidate
max_input_pixels = MAX_PIXELS_GENERATIVE // (candidate * candidate)
break
if max_input_pixels is not None:
image = downscale_image_tensor(image, total_pixels=max_input_pixels)
upscale_factor = scale
else:
output_width = width * requested_scale
output_height = height * requested_scale
raise ValueError(
f"Output size ({output_width}x{output_height} = {output_pixels:,} pixels) "
f"exceeds maximum allowed size of {MAX_PIXELS_GENERATIVE:,} pixels ({MAX_MP_GENERATIVE}MP). "
f"Enable auto_downscale or use a smaller input image or a lower upscale factor."
)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/hitpaw/api/photo-enhancer", method="POST"),
response_model=TaskCreateResponse,
data=ImageEnhanceTaskCreateRequest(
model_name=f"{model}_{upscale_factor}x",
img_url=await upload_image_to_comfyapi(cls, image, total_pixels=None),
),
wait_label="Creating task",
final_label_on_success="Task created",
)
if initial_res.code != 200:
raise ValueError(f"Task creation failed with code {initial_res.code}: {initial_res.message}")
request_price = initial_res.data.consume_coins / 1000
final_response = await poll_op(
cls,
ApiEndpoint(path="/proxy/hitpaw/api/task-status", method="POST"),
data=TaskCreateDataResponse(job_id=initial_res.data.job_id),
response_model=TaskStatusResponse,
status_extractor=lambda x: x.data.status,
price_extractor=lambda x: request_price,
poll_interval=10.0,
max_poll_attempts=480,
)
return IO.NodeOutput(await download_url_to_image_tensor(final_response.data.res_url))
class HitPawVideoEnhance(IO.ComfyNode):
@classmethod
def define_schema(cls):
model_options = []
for model_name in VIDEO_MODELS_MODELS_MAP:
if model_name in LIMITED_RESOLUTION_MODELS:
resolutions = RESOLUTIONS_LIMITED
else:
resolutions = RESOLUTIONS_FULL
model_options.append(
IO.DynamicCombo.Option(
model_name,
[IO.Combo.Input("resolution", options=resolutions)],
)
)
return IO.Schema(
node_id="HitPawVideoEnhance",
display_name="HitPaw Video Enhance",
category="api node/video/HitPaw",
description="Upscale low-resolution videos to high resolution, eliminate artifacts and noise. "
"Prices shown are per second of video.",
inputs=[
IO.DynamicCombo.Input("model", options=model_options),
IO.Video.Input("video"),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["model", "model.resolution"]),
expr="""
(
$m := $lookup(widgets, "model");
$res := $lookup(widgets, "model.resolution");
$standard_model_prices := {
"original": {"min": 0.01, "max": 0.198},
"720p": {"min": 0.01, "max": 0.06},
"1080p": {"min": 0.015, "max": 0.09},
"2k/qhd": {"min": 0.02, "max": 0.117},
"4k/uhd": {"min": 0.025, "max": 0.152},
"8k": {"min": 0.033, "max": 0.198}
};
$ultra_hd_model_prices := {
"original": {"min": 0.015, "max": 0.264},
"720p": {"min": 0.015, "max": 0.092},
"1080p": {"min": 0.02, "max": 0.12},
"2k/qhd": {"min": 0.026, "max": 0.156},
"4k/uhd": {"min": 0.034, "max": 0.203},
"8k": {"min": 0.044, "max": 0.264}
};
$generative_model_prices := {
"original": {"min": 0.015, "max": 0.338},
"720p": {"min": 0.008, "max": 0.090},
"1080p": {"min": 0.05, "max": 0.15},
"2k/qhd": {"min": 0.038, "max": 0.225},
"4k/uhd": {"min": 0.056, "max": 0.338}
};
$prices := $contains($m, "ultra hd") ? $ultra_hd_model_prices :
$contains($m, "generative") ? $generative_model_prices :
$standard_model_prices;
$price := $lookup($prices, $res);
{
"type": "range_usd",
"min_usd": $price.min,
"max_usd": $price.max,
"format": {"approximate": true, "suffix": "/second"}
}
)
""",
),
)
@classmethod
async def execute(
cls,
model: InputVideoModel,
video: Input.Video,
) -> IO.NodeOutput:
validate_video_duration(video, min_duration=0.5, max_duration=60 * 60)
resolution = model["resolution"]
src_width, src_height = video.get_dimensions()
if resolution == "original":
output_width = src_width
output_height = src_height
else:
if src_width == src_height:
target_size = RESOLUTION_SQUARE_MAP[resolution]
if target_size < src_width:
raise ValueError(
f"Selected resolution {resolution} ({target_size}x{target_size}) is smaller than "
f"the input video ({src_width}x{src_height}). Please select a higher resolution or 'original'."
)
output_width = target_size
output_height = target_size
else:
min_dimension = min(src_width, src_height)
target_size = RESOLUTION_TARGET_MAP[resolution]
if target_size < min_dimension:
raise ValueError(
f"Selected resolution {resolution} ({target_size}p) is smaller than "
f"the input video's shorter dimension ({min_dimension}p). "
f"Please select a higher resolution or 'original'."
)
if src_width > src_height:
output_height = target_size
output_width = int(target_size * (src_width / src_height))
else:
output_width = target_size
output_height = int(target_size * (src_height / src_width))
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/hitpaw/api/video-enhancer", method="POST"),
response_model=TaskCreateResponse,
data=VideoEnhanceTaskCreateRequest(
video_url=await upload_video_to_comfyapi(cls, video),
resolution=[output_width, output_height],
original_resolution=[src_width, src_height],
model_name=VIDEO_MODELS_MODELS_MAP[model["model"]],
),
wait_label="Creating task",
final_label_on_success="Task created",
)
request_price = initial_res.data.consume_coins / 1000
if initial_res.code != 200:
raise ValueError(f"Task creation failed with code {initial_res.code}: {initial_res.message}")
final_response = await poll_op(
cls,
ApiEndpoint(path="/proxy/hitpaw/api/task-status", method="POST"),
data=TaskStatusPollRequest(job_id=initial_res.data.job_id),
response_model=TaskStatusResponse,
status_extractor=lambda x: x.data.status,
price_extractor=lambda x: request_price,
poll_interval=10.0,
max_poll_attempts=320,
)
return IO.NodeOutput(await download_url_to_video_output(final_response.data.res_url))
class HitPawExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
HitPawGeneralImageEnhance,
HitPawVideoEnhance,
]
async def comfy_entrypoint() -> HitPawExtension:
return HitPawExtension()

View File

@ -94,7 +94,7 @@ async def upload_image_to_comfyapi(
*,
mime_type: str | None = None,
wait_label: str | None = "Uploading",
total_pixels: int = 2048 * 2048,
total_pixels: int | None = 2048 * 2048,
) -> str:
"""Uploads a single image to ComfyUI API and returns its download URL."""
return (

View File

@ -28,12 +28,39 @@ class TextEncodeAceStepAudio(io.ComfyNode):
conditioning = node_helpers.conditioning_set_values(conditioning, {"lyrics_strength": lyrics_strength})
return io.NodeOutput(conditioning)
class TextEncodeAceStepAudio15(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="TextEncodeAceStepAudio1.5",
category="conditioning",
inputs=[
io.Clip.Input("clip"),
io.String.Input("tags", multiline=True, dynamic_prompts=True),
io.String.Input("lyrics", multiline=True, dynamic_prompts=True),
io.Int.Input("seed", default=0, min=0, max=0xffffffffffffffff, control_after_generate=True),
io.Int.Input("bpm", default=120, min=10, max=300),
io.Float.Input("duration", default=120.0, min=0.0, max=2000.0, step=0.1),
io.Combo.Input("timesignature", options=['2', '3', '4', '6']),
io.Combo.Input("language", options=["en", "ja", "zh", "es", "de", "fr", "pt", "ru", "it", "nl", "pl", "tr", "vi", "cs", "fa", "id", "ko", "uk", "hu", "ar", "sv", "ro", "el"]),
io.Combo.Input("keyscale", options=[f"{root} {quality}" for quality in ["major", "minor"] for root in ["C", "C#", "Db", "D", "D#", "Eb", "E", "F", "F#", "Gb", "G", "G#", "Ab", "A", "A#", "Bb", "B"]]),
],
outputs=[io.Conditioning.Output()],
)
@classmethod
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed)
conditioning = clip.encode_from_tokens_scheduled(tokens)
return io.NodeOutput(conditioning)
class EmptyAceStepLatentAudio(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="EmptyAceStepLatentAudio",
display_name="Empty Ace Step 1.0 Latent Audio",
category="latent/audio",
inputs=[
io.Float.Input("seconds", default=120.0, min=1.0, max=1000.0, step=0.1),
@ -51,12 +78,60 @@ class EmptyAceStepLatentAudio(io.ComfyNode):
return io.NodeOutput({"samples": latent, "type": "audio"})
class EmptyAceStep15LatentAudio(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="EmptyAceStep1.5LatentAudio",
display_name="Empty Ace Step 1.5 Latent Audio",
category="latent/audio",
inputs=[
io.Float.Input("seconds", default=120.0, min=1.0, max=1000.0, step=0.01),
io.Int.Input(
"batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."
),
],
outputs=[io.Latent.Output()],
)
@classmethod
def execute(cls, seconds, batch_size) -> io.NodeOutput:
length = round((seconds * 48000 / 1920))
latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device())
return io.NodeOutput({"samples": latent, "type": "audio"})
class ReferenceTimbreAudio(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ReferenceTimbreAudio",
category="advanced/conditioning/audio",
is_experimental=True,
description="This node sets the reference audio for timbre (for ace step 1.5)",
inputs=[
io.Conditioning.Input("conditioning"),
io.Latent.Input("latent", optional=True),
],
outputs=[
io.Conditioning.Output(),
]
)
@classmethod
def execute(cls, conditioning, latent=None) -> io.NodeOutput:
if latent is not None:
conditioning = node_helpers.conditioning_set_values(conditioning, {"reference_audio_timbre_latents": [latent["samples"]]}, append=True)
return io.NodeOutput(conditioning)
class AceExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
TextEncodeAceStepAudio,
EmptyAceStepLatentAudio,
TextEncodeAceStepAudio15,
EmptyAceStep15LatentAudio,
ReferenceTimbreAudio,
]
async def comfy_entrypoint() -> AceExtension:

View File

@ -82,13 +82,14 @@ class VAEEncodeAudio(IO.ComfyNode):
@classmethod
def execute(cls, vae, audio) -> IO.NodeOutput:
sample_rate = audio["sample_rate"]
if 44100 != sample_rate:
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
vae_sample_rate = getattr(vae, "audio_sample_rate", 44100)
if vae_sample_rate != sample_rate:
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, vae_sample_rate)
else:
waveform = audio["waveform"]
t = vae.encode(waveform.movedim(1, -1))
return IO.NodeOutput({"samples":t})
return IO.NodeOutput({"samples": t})
encode = execute # TODO: remove
@ -114,7 +115,8 @@ class VAEDecodeAudio(IO.ComfyNode):
std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
std[std < 1.0] = 1.0
audio /= std
return IO.NodeOutput({"waveform": audio, "sample_rate": 44100 if "sample_rate" not in samples else samples["sample_rate"]})
vae_sample_rate = getattr(vae, "audio_sample_rate", 44100)
return IO.NodeOutput({"waveform": audio, "sample_rate": vae_sample_rate if "sample_rate" not in samples else samples["sample_rate"]})
decode = execute # TODO: remove

View File

@ -655,6 +655,54 @@ class BatchImagesMasksLatentsNode(io.ComfyNode):
batched = batch_masks(values)
return io.NodeOutput(batched)
from comfy_api.latest import node_replace
def register_replacements():
register_replacements_longeredge()
register_replacements_batchimages()
register_replacements_upscaleimage()
def register_replacements_longeredge():
# No dynamic inputs here
node_replace.register_node_replacement(node_replace.NodeReplace(
new_node_id="ImageScaleToMaxDimension",
old_node_id="ResizeImagesByLongerEdge",
old_widget_ids=["longer_edge"],
input_mapping=[
node_replace.InputMap(new_id="image", assign=node_replace.InputMap.OldId("images")),
node_replace.InputMap(new_id="largest_size", assign=node_replace.InputMap.OldId("longer_edge")),
node_replace.InputMap(new_id="upscale_method", assign=node_replace.InputMap.SetValue("lanczos")),
],
# just to test the frontend output_mapping code, does nothing really here
output_mapping=[node_replace.OutputMap(new_idx=0, old_idx=0)],
))
def register_replacements_batchimages():
# BatchImages node uses Autogrow
node_replace.register_node_replacement(node_replace.NodeReplace(
new_node_id="BatchImagesNode",
old_node_id="ImageBatch",
input_mapping=[
node_replace.InputMap(new_id="images.image0", assign=node_replace.InputMap.OldId("image1")),
node_replace.InputMap(new_id="images.image1", assign=node_replace.InputMap.OldId("image2")),
],
))
def register_replacements_upscaleimage():
# ResizeImageMaskNode uses DynamicCombo
node_replace.register_node_replacement(node_replace.NodeReplace(
new_node_id="ResizeImageMaskNode",
old_node_id="ImageScaleBy",
old_widget_ids=["upscale_method", "scale_by"],
input_mapping=[
node_replace.InputMap(new_id="input", assign=node_replace.InputMap.OldId("image")),
node_replace.InputMap(new_id="resize_type", assign=node_replace.InputMap.SetValue("scale by multiplier")),
node_replace.InputMap(new_id="resize_type.multiplier", assign=node_replace.InputMap.OldId("scale_by")),
node_replace.InputMap(new_id="scale_method", assign=node_replace.InputMap.OldId("upscale_method")),
],
))
class PostProcessingExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:

View File

@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.11.1"
__version__ = "0.12.0"

View File

@ -1001,7 +1001,7 @@ class DualCLIPLoader:
def INPUT_TYPES(s):
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "ltxv", "newbie"], ),
"type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "ltxv", "newbie", "ace"], ),
},
"optional": {
"device": (["default", "cpu"], {"advanced": True}),

View File

@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.11.1"
version = "0.12.0"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.10"

View File

@ -1,5 +1,5 @@
comfyui-frontend-package==1.37.11
comfyui-workflow-templates==0.8.27
comfyui-workflow-templates==0.8.31
comfyui-embedded-docs==0.4.0
torch
torchsde

View File

@ -40,6 +40,7 @@ from app.user_manager import UserManager
from app.model_manager import ModelFileManager
from app.custom_node_manager import CustomNodeManager
from app.subgraph_manager import SubgraphManager
from app.node_replace_manager import NodeReplaceManager
from typing import Optional, Union
from api_server.routes.internal.internal_routes import InternalRoutes
from protocol import BinaryEventTypes
@ -204,6 +205,7 @@ class PromptServer():
self.model_file_manager = ModelFileManager()
self.custom_node_manager = CustomNodeManager()
self.subgraph_manager = SubgraphManager()
self.node_replace_manager = NodeReplaceManager()
self.internal_routes = InternalRoutes(self)
self.supports = ["custom_nodes_from_web"]
self.prompt_queue = execution.PromptQueue(self)
@ -995,6 +997,7 @@ class PromptServer():
self.model_file_manager.add_routes(self.routes)
self.custom_node_manager.add_routes(self.routes, self.app, nodes.LOADED_MODULE_DIRS.items())
self.subgraph_manager.add_routes(self.routes, nodes.LOADED_MODULE_DIRS.items())
self.node_replace_manager.add_routes(self.routes)
self.app.add_subapp('/internal', self.internal_routes.get_app())
# Prefix every route with /api for easier matching for delegation.