mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-24 05:10:18 +08:00
Compare commits
20 Commits
b2bb7b2183
...
97390421e4
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
97390421e4 | ||
|
|
ac12f77bed | ||
|
|
fcd9a236b0 | ||
|
|
21e8425087 | ||
|
|
b6c79a648a | ||
|
|
25bc1b5b57 | ||
|
|
3cd19e99c1 | ||
|
|
007b87e7ac | ||
|
|
34751fe9f9 | ||
|
|
1c705f7bfb | ||
|
|
48e5ea1dfd | ||
|
|
3cd7b32f1b | ||
|
|
c0c9720d77 | ||
|
|
fc0cb10bcb | ||
|
|
b7d7cc1d49 | ||
|
|
79e94544bd | ||
|
|
ce0000c4f2 | ||
|
|
c5cfb34c07 | ||
|
|
edee33f55e | ||
|
|
3988f37386 |
2
.github/workflows/stable-release.yml
vendored
2
.github/workflows/stable-release.yml
vendored
@ -117,7 +117,7 @@ jobs:
|
||||
./python.exe get-pip.py
|
||||
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
|
||||
|
||||
grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
|
||||
grep comfy ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
|
||||
./python.exe -s -m pip install -r requirements_comfyui.txt
|
||||
rm requirements_comfyui.txt
|
||||
|
||||
|
||||
2
.github/workflows/test-ci.yml
vendored
2
.github/workflows/test-ci.yml
vendored
@ -20,6 +20,7 @@ jobs:
|
||||
test-stable:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
max-parallel: 1 # This forces sequential execution
|
||||
matrix:
|
||||
# os: [macos, linux, windows]
|
||||
# os: [macos, linux]
|
||||
@ -74,6 +75,7 @@ jobs:
|
||||
test-unix-nightly:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
max-parallel: 1 # This forces sequential execution
|
||||
matrix:
|
||||
# os: [macos, linux]
|
||||
os: [linux]
|
||||
|
||||
@ -1241,7 +1241,7 @@ def pytorch_attention_enabled():
|
||||
return ENABLE_PYTORCH_ATTENTION
|
||||
|
||||
def pytorch_attention_enabled_vae():
|
||||
if is_amd():
|
||||
if is_amd() and not amd_min_version(device=None, min_rdna_version=4):
|
||||
return False # enabling pytorch attention on AMD currently causes crash when doing high res
|
||||
return pytorch_attention_enabled()
|
||||
|
||||
|
||||
@ -718,6 +718,7 @@ class ModelPatcher:
|
||||
continue
|
||||
|
||||
cast_weight = self.force_cast_weights
|
||||
m.comfy_force_cast_weights = self.force_cast_weights
|
||||
if lowvram_weight:
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
m.weight_function = []
|
||||
@ -790,11 +791,12 @@ class ModelPatcher:
|
||||
for param in params:
|
||||
self.pin_weight_to_device("{}.{}".format(n, param))
|
||||
|
||||
usable_stat = "{:.2f} MB usable,".format(lowvram_model_memory / (1024 * 1024)) if lowvram_model_memory < 1e32 else ""
|
||||
if lowvram_counter > 0:
|
||||
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
|
||||
logging.info("loaded partially; {} {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(usable_stat, mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
|
||||
self.model.model_lowvram = True
|
||||
else:
|
||||
logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
|
||||
logging.info("loaded completely; {} {:.2f} MB loaded, full load: {}".format(usable_stat, mem_counter / (1024 * 1024), full_load))
|
||||
self.model.model_lowvram = False
|
||||
if full_load:
|
||||
self.model.to(device_to)
|
||||
|
||||
34
comfy/ops.py
34
comfy/ops.py
@ -427,12 +427,12 @@ def fp8_linear(self, input):
|
||||
input = torch.clamp(input, min=-448, max=448, out=input)
|
||||
input_fp8 = input.to(dtype).contiguous()
|
||||
layout_params_input = TensorCoreFP8Layout.Params(scale=scale_input, orig_dtype=input_dtype, orig_shape=tuple(input_fp8.shape))
|
||||
quantized_input = QuantizedTensor(input_fp8, TensorCoreFP8Layout, layout_params_input)
|
||||
quantized_input = QuantizedTensor(input_fp8, "TensorCoreFP8Layout", layout_params_input)
|
||||
|
||||
# Wrap weight in QuantizedTensor - this enables unified dispatch
|
||||
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
|
||||
layout_params_weight = TensorCoreFP8Layout.Params(scale=scale_weight, orig_dtype=input_dtype, orig_shape=tuple(w.shape))
|
||||
quantized_weight = QuantizedTensor(w, TensorCoreFP8Layout, layout_params_weight)
|
||||
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
|
||||
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
|
||||
|
||||
uncast_bias_weight(self, w, bias, offload_stream)
|
||||
@ -654,29 +654,29 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
|
||||
run_every_op()
|
||||
|
||||
input_shape = input.shape
|
||||
tensor_3d = input.ndim == 3
|
||||
|
||||
if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(input, *args, **kwargs)
|
||||
reshaped_3d = False
|
||||
|
||||
if (getattr(self, 'layout_type', None) is not None and
|
||||
not isinstance(input, QuantizedTensor)):
|
||||
not isinstance(input, QuantizedTensor) and not self._full_precision_mm and
|
||||
not getattr(self, 'comfy_force_cast_weights', False) and
|
||||
len(self.weight_function) == 0 and len(self.bias_function) == 0):
|
||||
|
||||
# Reshape 3D tensors to 2D for quantization (needed for NVFP4 and others)
|
||||
if tensor_3d:
|
||||
input = input.reshape(-1, input_shape[2])
|
||||
input_reshaped = input.reshape(-1, input_shape[2]) if input.ndim == 3 else input
|
||||
|
||||
if input.ndim != 2:
|
||||
# Fall back to comfy_cast_weights for non-2D tensors
|
||||
return self.forward_comfy_cast_weights(input.reshape(input_shape), *args, **kwargs)
|
||||
# Fall back to non-quantized for non-2D tensors
|
||||
if input_reshaped.ndim == 2:
|
||||
reshaped_3d = input.ndim == 3
|
||||
# dtype is now implicit in the layout class
|
||||
scale = getattr(self, 'input_scale', None)
|
||||
if scale is not None:
|
||||
scale = comfy.model_management.cast_to_device(scale, input.device, None)
|
||||
input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale)
|
||||
|
||||
# dtype is now implicit in the layout class
|
||||
input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None))
|
||||
|
||||
output = self._forward(input, self.weight, self.bias)
|
||||
output = self.forward_comfy_cast_weights(input)
|
||||
|
||||
# Reshape output back to 3D if input was 3D
|
||||
if tensor_3d:
|
||||
if reshaped_3d:
|
||||
output = output.reshape((input_shape[0], input_shape[1], self.weight.shape[0]))
|
||||
|
||||
return output
|
||||
|
||||
@ -13,6 +13,14 @@ try:
|
||||
get_layout_class,
|
||||
)
|
||||
_CK_AVAILABLE = True
|
||||
if torch.version.cuda is None:
|
||||
ck.registry.disable("cuda")
|
||||
else:
|
||||
cuda_version = tuple(map(int, str(torch.version.cuda).split('.')))
|
||||
if cuda_version < (13,):
|
||||
ck.registry.disable("cuda")
|
||||
logging.warning("WARNING: You need pytorch with cu130 or higher to use optimized CUDA operations.")
|
||||
|
||||
ck.registry.disable("triton")
|
||||
for k, v in ck.list_backends().items():
|
||||
logging.info(f"Found comfy_kitchen backend {k}: {v}")
|
||||
|
||||
11
comfy/sd.py
11
comfy/sd.py
@ -218,7 +218,7 @@ class CLIP:
|
||||
if unprojected:
|
||||
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
||||
|
||||
self.load_model()
|
||||
self.load_model(tokens)
|
||||
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
|
||||
all_hooks.reset()
|
||||
self.patcher.patch_hooks(None)
|
||||
@ -266,7 +266,7 @@ class CLIP:
|
||||
if return_pooled == "unprojected":
|
||||
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
||||
|
||||
self.load_model()
|
||||
self.load_model(tokens)
|
||||
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
|
||||
o = self.cond_stage_model.encode_token_weights(tokens)
|
||||
cond, pooled = o[:2]
|
||||
@ -299,8 +299,11 @@ class CLIP:
|
||||
sd_clip[k] = sd_tokenizer[k]
|
||||
return sd_clip
|
||||
|
||||
def load_model(self):
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
def load_model(self, tokens={}):
|
||||
memory_used = 0
|
||||
if hasattr(self.cond_stage_model, "memory_estimation_function"):
|
||||
memory_used = self.cond_stage_model.memory_estimation_function(tokens, device=self.patcher.load_device)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
return self.patcher
|
||||
|
||||
def get_key_patches(self):
|
||||
|
||||
@ -845,7 +845,7 @@ class LTXAV(LTXV):
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = 0.055 # TODO
|
||||
self.memory_usage_factor = 0.061 # TODO
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.LTXAV(self, device=device)
|
||||
|
||||
@ -36,10 +36,10 @@ class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer):
|
||||
|
||||
class Gemma3_12BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
||||
llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None)
|
||||
if llama_scaled_fp8 is not None:
|
||||
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
@ -98,10 +98,13 @@ class LTXAVTEModel(torch.nn.Module):
|
||||
|
||||
out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs)
|
||||
out_device = out.device
|
||||
if comfy.model_management.should_use_bf16(self.execution_device):
|
||||
out = out.to(device=self.execution_device, dtype=torch.bfloat16)
|
||||
out = out.movedim(1, -1).to(self.execution_device)
|
||||
out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6)
|
||||
out = out.reshape((out.shape[0], out.shape[1], -1))
|
||||
out = self.text_embedding_projection(out)
|
||||
out = out.float()
|
||||
out_vid = self.video_embeddings_connector(out)[0]
|
||||
out_audio = self.audio_embeddings_connector(out)[0]
|
||||
out = torch.concat((out_vid, out_audio), dim=-1)
|
||||
@ -118,13 +121,21 @@ class LTXAVTEModel(torch.nn.Module):
|
||||
|
||||
return self.load_state_dict(sdo, strict=False)
|
||||
|
||||
def memory_estimation_function(self, token_weight_pairs, device=None):
|
||||
constant = 6.0
|
||||
if comfy.model_management.should_use_bf16(device):
|
||||
constant /= 2.0
|
||||
|
||||
def ltxav_te(dtype_llama=None, llama_scaled_fp8=None):
|
||||
token_weight_pairs = token_weight_pairs.get("gemma3_12b", [])
|
||||
num_tokens = sum(map(lambda a: len(a), token_weight_pairs))
|
||||
return num_tokens * constant * 1024 * 1024
|
||||
|
||||
def ltxav_te(dtype_llama=None, llama_quantization_metadata=None):
|
||||
class LTXAVTEModel_(LTXAVTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["llama_scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["llama_quantization_metadata"] = llama_quantization_metadata
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
|
||||
|
||||
@ -13,7 +13,9 @@ from comfy_api_nodes.util import (
|
||||
poll_op,
|
||||
sync_op,
|
||||
tensor_to_base64_string,
|
||||
upload_video_to_comfyapi,
|
||||
validate_audio_duration,
|
||||
validate_video_duration,
|
||||
)
|
||||
|
||||
|
||||
@ -41,6 +43,12 @@ class Image2VideoInputField(BaseModel):
|
||||
audio_url: str | None = Field(None)
|
||||
|
||||
|
||||
class Reference2VideoInputField(BaseModel):
|
||||
prompt: str = Field(...)
|
||||
negative_prompt: str | None = Field(None)
|
||||
reference_video_urls: list[str] = Field(...)
|
||||
|
||||
|
||||
class Txt2ImageParametersField(BaseModel):
|
||||
size: str = Field(...)
|
||||
n: int = Field(1, description="Number of images to generate.") # we support only value=1
|
||||
@ -76,6 +84,14 @@ class Image2VideoParametersField(BaseModel):
|
||||
shot_type: str = Field("single")
|
||||
|
||||
|
||||
class Reference2VideoParametersField(BaseModel):
|
||||
size: str = Field(...)
|
||||
duration: int = Field(5, ge=5, le=15)
|
||||
shot_type: str = Field("single")
|
||||
seed: int = Field(..., ge=0, le=2147483647)
|
||||
watermark: bool = Field(False)
|
||||
|
||||
|
||||
class Text2ImageTaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
input: Text2ImageInputField = Field(...)
|
||||
@ -100,6 +116,12 @@ class Image2VideoTaskCreationRequest(BaseModel):
|
||||
parameters: Image2VideoParametersField = Field(...)
|
||||
|
||||
|
||||
class Reference2VideoTaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
input: Reference2VideoInputField = Field(...)
|
||||
parameters: Reference2VideoParametersField = Field(...)
|
||||
|
||||
|
||||
class TaskCreationOutputField(BaseModel):
|
||||
task_id: str = Field(...)
|
||||
task_status: str = Field(...)
|
||||
@ -721,6 +743,143 @@ class WanImageToVideoApi(IO.ComfyNode):
|
||||
return IO.NodeOutput(await download_url_to_video_output(response.output.video_url))
|
||||
|
||||
|
||||
class WanReferenceVideoApi(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="WanReferenceVideoApi",
|
||||
display_name="Wan Reference to Video",
|
||||
category="api node/video/Wan",
|
||||
description="Use the character and voice from input videos, combined with a prompt, "
|
||||
"to generate a new video that maintains character consistency.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["wan2.6-r2v"]),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Prompt describing the elements and visual features. Supports English and Chinese. "
|
||||
"Use identifiers such as `character1` and `character2` to refer to the reference characters.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Negative prompt describing what to avoid.",
|
||||
),
|
||||
IO.Autogrow.Input(
|
||||
"reference_videos",
|
||||
template=IO.Autogrow.TemplateNames(
|
||||
IO.Video.Input("reference_video"),
|
||||
names=["character1", "character2", "character3"],
|
||||
min=1,
|
||||
),
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"size",
|
||||
options=[
|
||||
"720p: 1:1 (960x960)",
|
||||
"720p: 16:9 (1280x720)",
|
||||
"720p: 9:16 (720x1280)",
|
||||
"720p: 4:3 (1088x832)",
|
||||
"720p: 3:4 (832x1088)",
|
||||
"1080p: 1:1 (1440x1440)",
|
||||
"1080p: 16:9 (1920x1080)",
|
||||
"1080p: 9:16 (1080x1920)",
|
||||
"1080p: 4:3 (1632x1248)",
|
||||
"1080p: 3:4 (1248x1632)",
|
||||
],
|
||||
),
|
||||
IO.Int.Input(
|
||||
"duration",
|
||||
default=5,
|
||||
min=5,
|
||||
max=10,
|
||||
step=5,
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"shot_type",
|
||||
options=["single", "multi"],
|
||||
tooltip="Specifies the shot type for the generated video, that is, whether the video is a "
|
||||
"single continuous shot or multiple shots with cuts.",
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"watermark",
|
||||
default=False,
|
||||
tooltip="Whether to add an AI-generated watermark to the result.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
reference_videos: IO.Autogrow.Type,
|
||||
size: str,
|
||||
duration: int,
|
||||
seed: int,
|
||||
shot_type: str,
|
||||
watermark: bool,
|
||||
):
|
||||
reference_video_urls = []
|
||||
for i in reference_videos:
|
||||
validate_video_duration(reference_videos[i], min_duration=2, max_duration=30)
|
||||
for i in reference_videos:
|
||||
reference_video_urls.append(await upload_video_to_comfyapi(cls, reference_videos[i]))
|
||||
width, height = RES_IN_PARENS.search(size).groups()
|
||||
initial_response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/wan/api/v1/services/aigc/video-generation/video-synthesis", method="POST"),
|
||||
response_model=TaskCreationResponse,
|
||||
data=Reference2VideoTaskCreationRequest(
|
||||
model=model,
|
||||
input=Reference2VideoInputField(
|
||||
prompt=prompt, negative_prompt=negative_prompt, reference_video_urls=reference_video_urls
|
||||
),
|
||||
parameters=Reference2VideoParametersField(
|
||||
size=f"{width}*{height}",
|
||||
duration=duration,
|
||||
shot_type=shot_type,
|
||||
watermark=watermark,
|
||||
seed=seed,
|
||||
),
|
||||
),
|
||||
)
|
||||
if not initial_response.output:
|
||||
raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}")
|
||||
response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"),
|
||||
response_model=VideoTaskStatusResponse,
|
||||
status_extractor=lambda x: x.output.task_status,
|
||||
poll_interval=6,
|
||||
max_poll_attempts=280,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(response.output.video_url))
|
||||
|
||||
|
||||
class WanApiExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
@ -729,6 +888,7 @@ class WanApiExtension(ComfyExtension):
|
||||
WanImageToImageApi,
|
||||
WanTextToVideoApi,
|
||||
WanImageToVideoApi,
|
||||
WanReferenceVideoApi,
|
||||
]
|
||||
|
||||
|
||||
|
||||
@ -119,7 +119,7 @@ async def upload_video_to_comfyapi(
|
||||
raise ValueError(f"Could not verify video duration from source: {e}") from e
|
||||
|
||||
upload_mime_type = f"video/{container.value.lower()}"
|
||||
filename = f"uploaded_video.{container.value.lower()}"
|
||||
filename = f"{uuid.uuid4()}.{container.value.lower()}"
|
||||
|
||||
# Convert VideoInput to BytesIO using specified container/codec
|
||||
video_bytes_io = BytesIO()
|
||||
|
||||
@ -185,6 +185,10 @@ class LTXAVTextEncoderLoader(io.ComfyNode):
|
||||
io.Combo.Input(
|
||||
"ckpt_name",
|
||||
options=folder_paths.get_filename_list("checkpoints"),
|
||||
),
|
||||
io.Combo.Input(
|
||||
"device",
|
||||
options=["default", "cpu"],
|
||||
)
|
||||
],
|
||||
outputs=[io.Clip.Output()],
|
||||
@ -197,7 +201,11 @@ class LTXAVTextEncoderLoader(io.ComfyNode):
|
||||
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder)
|
||||
clip_path2 = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
|
||||
|
||||
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
|
||||
model_options = {}
|
||||
if device == "cpu":
|
||||
model_options["load_device"] = model_options["offload_device"] = torch.device("cpu")
|
||||
|
||||
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options)
|
||||
return io.NodeOutput(clip)
|
||||
|
||||
|
||||
|
||||
@ -1,3 +1,3 @@
|
||||
# This file is automatically generated by the build process when version is
|
||||
# updated in pyproject.toml.
|
||||
__version__ = "0.7.0"
|
||||
__version__ = "0.8.1"
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "ComfyUI"
|
||||
version = "0.7.0"
|
||||
version = "0.8.1"
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE" }
|
||||
requires-python = ">=3.10"
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
comfyui-frontend-package==1.35.9
|
||||
comfyui-workflow-templates==0.7.67
|
||||
comfyui-workflow-templates==0.7.69
|
||||
comfyui-embedded-docs==0.3.1
|
||||
torch
|
||||
torchsde
|
||||
@ -21,7 +21,7 @@ psutil
|
||||
alembic
|
||||
SQLAlchemy
|
||||
av>=14.2.0
|
||||
comfy-kitchen>=0.2.2
|
||||
comfy-kitchen>=0.2.5
|
||||
|
||||
#non essential dependencies:
|
||||
kornia>=0.7.1
|
||||
|
||||
Loading…
Reference in New Issue
Block a user