mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-25 05:40:15 +08:00
Compare commits
13 Commits
b526c62f39
...
bcc85c4dcb
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
bcc85c4dcb | ||
|
|
50d6e1caf4 | ||
|
|
ac12f77bed | ||
|
|
fcd9a236b0 | ||
|
|
21e8425087 | ||
|
|
b6c79a648a | ||
|
|
25bc1b5b57 | ||
|
|
3cd19e99c1 | ||
|
|
007b87e7ac | ||
|
|
34751fe9f9 | ||
|
|
1c705f7bfb | ||
|
|
48e5ea1dfd | ||
|
|
2d39630302 |
@ -718,6 +718,7 @@ class ModelPatcher:
|
||||
continue
|
||||
|
||||
cast_weight = self.force_cast_weights
|
||||
m.comfy_force_cast_weights = self.force_cast_weights
|
||||
if lowvram_weight:
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
m.weight_function = []
|
||||
@ -790,11 +791,12 @@ class ModelPatcher:
|
||||
for param in params:
|
||||
self.pin_weight_to_device("{}.{}".format(n, param))
|
||||
|
||||
usable_stat = "{:.2f} MB usable,".format(lowvram_model_memory / (1024 * 1024)) if lowvram_model_memory < 1e32 else ""
|
||||
if lowvram_counter > 0:
|
||||
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
|
||||
logging.info("loaded partially; {} {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(usable_stat, mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
|
||||
self.model.model_lowvram = True
|
||||
else:
|
||||
logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
|
||||
logging.info("loaded completely; {} {:.2f} MB loaded, full load: {}".format(usable_stat, mem_counter / (1024 * 1024), full_load))
|
||||
self.model.model_lowvram = False
|
||||
if full_load:
|
||||
self.model.to(device_to)
|
||||
|
||||
30
comfy/ops.py
30
comfy/ops.py
@ -654,29 +654,29 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
|
||||
run_every_op()
|
||||
|
||||
input_shape = input.shape
|
||||
tensor_3d = input.ndim == 3
|
||||
|
||||
if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
|
||||
return self.forward_comfy_cast_weights(input, *args, **kwargs)
|
||||
reshaped_3d = False
|
||||
|
||||
if (getattr(self, 'layout_type', None) is not None and
|
||||
not isinstance(input, QuantizedTensor)):
|
||||
not isinstance(input, QuantizedTensor) and not self._full_precision_mm and
|
||||
not getattr(self, 'comfy_force_cast_weights', False) and
|
||||
len(self.weight_function) == 0 and len(self.bias_function) == 0):
|
||||
|
||||
# Reshape 3D tensors to 2D for quantization (needed for NVFP4 and others)
|
||||
if tensor_3d:
|
||||
input = input.reshape(-1, input_shape[2])
|
||||
input_reshaped = input.reshape(-1, input_shape[2]) if input.ndim == 3 else input
|
||||
|
||||
if input.ndim != 2:
|
||||
# Fall back to comfy_cast_weights for non-2D tensors
|
||||
return self.forward_comfy_cast_weights(input.reshape(input_shape), *args, **kwargs)
|
||||
# Fall back to non-quantized for non-2D tensors
|
||||
if input_reshaped.ndim == 2:
|
||||
reshaped_3d = input.ndim == 3
|
||||
# dtype is now implicit in the layout class
|
||||
scale = getattr(self, 'input_scale', None)
|
||||
if scale is not None:
|
||||
scale = comfy.model_management.cast_to_device(scale, input.device, None)
|
||||
input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale)
|
||||
|
||||
# dtype is now implicit in the layout class
|
||||
input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None))
|
||||
|
||||
output = self._forward(input, self.weight, self.bias)
|
||||
output = self.forward_comfy_cast_weights(input)
|
||||
|
||||
# Reshape output back to 3D if input was 3D
|
||||
if tensor_3d:
|
||||
if reshaped_3d:
|
||||
output = output.reshape((input_shape[0], input_shape[1], self.weight.shape[0]))
|
||||
|
||||
return output
|
||||
|
||||
@ -19,6 +19,7 @@ try:
|
||||
cuda_version = tuple(map(int, str(torch.version.cuda).split('.')))
|
||||
if cuda_version < (13,):
|
||||
ck.registry.disable("cuda")
|
||||
logging.warning("WARNING: You need pytorch with cu130 or higher to use optimized CUDA operations.")
|
||||
|
||||
ck.registry.disable("triton")
|
||||
for k, v in ck.list_backends().items():
|
||||
|
||||
15
comfy/sd.py
15
comfy/sd.py
@ -218,7 +218,7 @@ class CLIP:
|
||||
if unprojected:
|
||||
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
||||
|
||||
self.load_model()
|
||||
self.load_model(tokens)
|
||||
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
|
||||
all_hooks.reset()
|
||||
self.patcher.patch_hooks(None)
|
||||
@ -266,7 +266,7 @@ class CLIP:
|
||||
if return_pooled == "unprojected":
|
||||
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
||||
|
||||
self.load_model()
|
||||
self.load_model(tokens)
|
||||
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
|
||||
o = self.cond_stage_model.encode_token_weights(tokens)
|
||||
cond, pooled = o[:2]
|
||||
@ -299,8 +299,11 @@ class CLIP:
|
||||
sd_clip[k] = sd_tokenizer[k]
|
||||
return sd_clip
|
||||
|
||||
def load_model(self):
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
def load_model(self, tokens={}):
|
||||
memory_used = 0
|
||||
if hasattr(self.cond_stage_model, "memory_estimation_function"):
|
||||
memory_used = self.cond_stage_model.memory_estimation_function(tokens, device=self.patcher.load_device)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
return self.patcher
|
||||
|
||||
def get_key_patches(self):
|
||||
@ -476,8 +479,8 @@ class VAE:
|
||||
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version, config=vae_config)
|
||||
self.latent_channels = 128
|
||||
self.latent_dim = 3
|
||||
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
|
||||
self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (1200 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
|
||||
self.memory_used_encode = lambda shape, dtype: (80 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
|
||||
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32)
|
||||
self.upscale_index_formula = (8, 32, 32)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32)
|
||||
|
||||
@ -845,7 +845,7 @@ class LTXAV(LTXV):
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = 0.055 # TODO
|
||||
self.memory_usage_factor = 0.061 # TODO
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.LTXAV(self, device=device)
|
||||
|
||||
@ -98,10 +98,13 @@ class LTXAVTEModel(torch.nn.Module):
|
||||
|
||||
out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs)
|
||||
out_device = out.device
|
||||
if comfy.model_management.should_use_bf16(self.execution_device):
|
||||
out = out.to(device=self.execution_device, dtype=torch.bfloat16)
|
||||
out = out.movedim(1, -1).to(self.execution_device)
|
||||
out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6)
|
||||
out = out.reshape((out.shape[0], out.shape[1], -1))
|
||||
out = self.text_embedding_projection(out)
|
||||
out = out.float()
|
||||
out_vid = self.video_embeddings_connector(out)[0]
|
||||
out_audio = self.audio_embeddings_connector(out)[0]
|
||||
out = torch.concat((out_vid, out_audio), dim=-1)
|
||||
@ -118,6 +121,14 @@ class LTXAVTEModel(torch.nn.Module):
|
||||
|
||||
return self.load_state_dict(sdo, strict=False)
|
||||
|
||||
def memory_estimation_function(self, token_weight_pairs, device=None):
|
||||
constant = 6.0
|
||||
if comfy.model_management.should_use_bf16(device):
|
||||
constant /= 2.0
|
||||
|
||||
token_weight_pairs = token_weight_pairs.get("gemma3_12b", [])
|
||||
num_tokens = sum(map(lambda a: len(a), token_weight_pairs))
|
||||
return num_tokens * constant * 1024 * 1024
|
||||
|
||||
def ltxav_te(dtype_llama=None, llama_quantization_metadata=None):
|
||||
class LTXAVTEModel_(LTXAVTEModel):
|
||||
|
||||
@ -14,8 +14,9 @@ class JobStatus:
|
||||
IN_PROGRESS = 'in_progress'
|
||||
COMPLETED = 'completed'
|
||||
FAILED = 'failed'
|
||||
CANCELLED = 'cancelled'
|
||||
|
||||
ALL = [PENDING, IN_PROGRESS, COMPLETED, FAILED]
|
||||
ALL = [PENDING, IN_PROGRESS, COMPLETED, FAILED, CANCELLED]
|
||||
|
||||
|
||||
# Media types that can be previewed in the frontend
|
||||
@ -94,12 +95,6 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs:
|
||||
|
||||
status_info = history_item.get('status', {})
|
||||
status_str = status_info.get('status_str') if status_info else None
|
||||
if status_str == 'success':
|
||||
status = JobStatus.COMPLETED
|
||||
elif status_str == 'error':
|
||||
status = JobStatus.FAILED
|
||||
else:
|
||||
status = JobStatus.COMPLETED
|
||||
|
||||
outputs = history_item.get('outputs', {})
|
||||
outputs_count, preview_output = get_outputs_summary(outputs)
|
||||
@ -107,6 +102,7 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs:
|
||||
execution_error = None
|
||||
execution_start_time = None
|
||||
execution_end_time = None
|
||||
was_interrupted = False
|
||||
if status_info:
|
||||
messages = status_info.get('messages', [])
|
||||
for entry in messages:
|
||||
@ -119,6 +115,15 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs:
|
||||
execution_end_time = event_data.get('timestamp')
|
||||
if event_name == 'execution_error':
|
||||
execution_error = event_data
|
||||
elif event_name == 'execution_interrupted':
|
||||
was_interrupted = True
|
||||
|
||||
if status_str == 'success':
|
||||
status = JobStatus.COMPLETED
|
||||
elif status_str == 'error':
|
||||
status = JobStatus.CANCELLED if was_interrupted else JobStatus.FAILED
|
||||
else:
|
||||
status = JobStatus.COMPLETED
|
||||
|
||||
job = prune_dict({
|
||||
'id': prompt_id,
|
||||
@ -268,13 +273,13 @@ def get_all_jobs(
|
||||
for item in queued:
|
||||
jobs.append(normalize_queue_item(item, JobStatus.PENDING))
|
||||
|
||||
include_completed = JobStatus.COMPLETED in status_filter
|
||||
include_failed = JobStatus.FAILED in status_filter
|
||||
if include_completed or include_failed:
|
||||
history_statuses = {JobStatus.COMPLETED, JobStatus.FAILED, JobStatus.CANCELLED}
|
||||
requested_history_statuses = history_statuses & set(status_filter)
|
||||
if requested_history_statuses:
|
||||
for prompt_id, history_item in history.items():
|
||||
is_failed = history_item.get('status', {}).get('status_str') == 'error'
|
||||
if (is_failed and include_failed) or (not is_failed and include_completed):
|
||||
jobs.append(normalize_history_item(prompt_id, history_item))
|
||||
job = normalize_history_item(prompt_id, history_item)
|
||||
if job.get('status') in requested_history_statuses:
|
||||
jobs.append(job)
|
||||
|
||||
if workflow_id:
|
||||
jobs = [j for j in jobs if j.get('workflow_id') == workflow_id]
|
||||
|
||||
@ -185,6 +185,10 @@ class LTXAVTextEncoderLoader(io.ComfyNode):
|
||||
io.Combo.Input(
|
||||
"ckpt_name",
|
||||
options=folder_paths.get_filename_list("checkpoints"),
|
||||
),
|
||||
io.Combo.Input(
|
||||
"device",
|
||||
options=["default", "cpu"],
|
||||
)
|
||||
],
|
||||
outputs=[io.Clip.Output()],
|
||||
@ -197,7 +201,11 @@ class LTXAVTextEncoderLoader(io.ComfyNode):
|
||||
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder)
|
||||
clip_path2 = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
|
||||
|
||||
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
|
||||
model_options = {}
|
||||
if device == "cpu":
|
||||
model_options["load_device"] = model_options["offload_device"] = torch.device("cpu")
|
||||
|
||||
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options)
|
||||
return io.NodeOutput(clip)
|
||||
|
||||
|
||||
|
||||
@ -1,3 +1,3 @@
|
||||
# This file is automatically generated by the build process when version is
|
||||
# updated in pyproject.toml.
|
||||
__version__ = "0.8.0"
|
||||
__version__ = "0.8.1"
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "ComfyUI"
|
||||
version = "0.8.0"
|
||||
version = "0.8.1"
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE" }
|
||||
requires-python = ">=3.10"
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
comfyui-frontend-package==1.35.9
|
||||
comfyui-workflow-templates==0.7.67
|
||||
comfyui-workflow-templates==0.7.69
|
||||
comfyui-embedded-docs==0.3.1
|
||||
torch
|
||||
torchsde
|
||||
@ -21,7 +21,7 @@ psutil
|
||||
alembic
|
||||
SQLAlchemy
|
||||
av>=14.2.0
|
||||
comfy-kitchen>=0.2.3
|
||||
comfy-kitchen>=0.2.5
|
||||
|
||||
#non essential dependencies:
|
||||
kornia>=0.7.1
|
||||
|
||||
@ -19,6 +19,7 @@ class TestJobStatus:
|
||||
assert JobStatus.IN_PROGRESS == 'in_progress'
|
||||
assert JobStatus.COMPLETED == 'completed'
|
||||
assert JobStatus.FAILED == 'failed'
|
||||
assert JobStatus.CANCELLED == 'cancelled'
|
||||
|
||||
def test_all_contains_all_statuses(self):
|
||||
"""ALL should contain all status values."""
|
||||
@ -26,7 +27,8 @@ class TestJobStatus:
|
||||
assert JobStatus.IN_PROGRESS in JobStatus.ALL
|
||||
assert JobStatus.COMPLETED in JobStatus.ALL
|
||||
assert JobStatus.FAILED in JobStatus.ALL
|
||||
assert len(JobStatus.ALL) == 4
|
||||
assert JobStatus.CANCELLED in JobStatus.ALL
|
||||
assert len(JobStatus.ALL) == 5
|
||||
|
||||
|
||||
class TestIsPreviewable:
|
||||
@ -336,6 +338,40 @@ class TestNormalizeHistoryItem:
|
||||
assert job['execution_error']['node_type'] == 'KSampler'
|
||||
assert job['execution_error']['exception_message'] == 'CUDA out of memory'
|
||||
|
||||
def test_cancelled_job(self):
|
||||
"""Cancelled/interrupted history item should have cancelled status."""
|
||||
history_item = {
|
||||
'prompt': (
|
||||
5,
|
||||
'prompt-cancelled',
|
||||
{'nodes': {}},
|
||||
{'create_time': 1234567890000},
|
||||
['node1'],
|
||||
),
|
||||
'status': {
|
||||
'status_str': 'error',
|
||||
'completed': False,
|
||||
'messages': [
|
||||
('execution_start', {'prompt_id': 'prompt-cancelled', 'timestamp': 1234567890500}),
|
||||
('execution_interrupted', {
|
||||
'prompt_id': 'prompt-cancelled',
|
||||
'node_id': '5',
|
||||
'node_type': 'KSampler',
|
||||
'executed': ['1', '2', '3'],
|
||||
'timestamp': 1234567891000,
|
||||
})
|
||||
]
|
||||
},
|
||||
'outputs': {},
|
||||
}
|
||||
|
||||
job = normalize_history_item('prompt-cancelled', history_item)
|
||||
assert job['status'] == 'cancelled'
|
||||
assert job['execution_start_time'] == 1234567890500
|
||||
assert job['execution_end_time'] == 1234567891000
|
||||
# Cancelled jobs should not have execution_error set
|
||||
assert 'execution_error' not in job
|
||||
|
||||
def test_include_outputs(self):
|
||||
"""When include_outputs=True, should include full output data."""
|
||||
history_item = {
|
||||
|
||||
Loading…
Reference in New Issue
Block a user