Compare commits

...

5 Commits

Author SHA1 Message Date
Miklos Nagy
f7c36abe7f
Merge c463359308 into c05a08ae66 2026-02-03 09:52:51 +09:00
comfyanonymous
c05a08ae66
Add back function. (#12234)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
2026-02-02 19:52:07 -05:00
rattus
de9ada6a41
Dynamic VRAM unloading fix (#12227)
* mp: fix full dynamic unloading

This was not unloading dynamic models when requesting a full unload via
the unpatch() code path.

This was ok, i your workflow was all dynamic models but fails with big
VRAM leaks if you need to fully unload something for a regular ModelPatcher

It also fices the "unload models" button.

* mm: load models outside of Aimdo Mempool

In dynamic_vram mode, escape the Aimdo mempool and load into the regular
mempool. Use a dummy thread to do it.
2026-02-02 17:35:20 -05:00
rattus
37f711d4a1
mm: Fix cast buffers with intel offloading (#12229)
Intel has offloading support but there were some nvidia calls in the
new cast buffer stuff.
2026-02-02 17:34:46 -05:00
Miklos Nagy
c463359308
Update execution.py
Grouping nodes by input type (revision as my linter got rid of comments in the previous round)
2026-01-28 11:38:01 +01:00
3 changed files with 202 additions and 13 deletions

View File

@ -19,7 +19,8 @@
import psutil
import logging
from enum import Enum
from comfy.cli_args import args, PerformanceFeature
from comfy.cli_args import args, PerformanceFeature, enables_dynamic_vram
import threading
import torch
import sys
import platform
@ -650,7 +651,7 @@ def free_memory(memory_required, device, keep_loaded=[], for_dynamic=False, ram_
soft_empty_cache()
return unloaded_models
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
def load_models_gpu_orig(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
cleanup_models_gc()
global vram_state
@ -746,6 +747,26 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
current_loaded_models.insert(0, loaded_model)
return
def load_models_gpu_thread(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load):
with torch.inference_mode():
load_models_gpu_orig(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load)
soft_empty_cache()
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
#Deliberately load models outside of the Aimdo mempool so they can be retained accross
#nodes. Use a dummy thread to do it as pytorch documents that mempool contexts are
#thread local. So exploit that to escape context
if enables_dynamic_vram():
t = threading.Thread(
target=load_models_gpu_thread,
args=(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load)
)
t.start()
t.join()
else:
load_models_gpu_orig(models, memory_required=memory_required, force_patch_weights=force_patch_weights,
minimum_memory_required=minimum_memory_required, force_full_load=force_full_load)
def load_model_gpu(model):
return load_models_gpu([model])
@ -1112,11 +1133,11 @@ def get_cast_buffer(offload_stream, device, size, ref):
return None
if cast_buffer is not None and cast_buffer.numel() > 50 * (1024 ** 2):
#I want my wrongly sized 50MB+ of VRAM back from the caching allocator right now
torch.cuda.synchronize()
synchronize()
del STREAM_CAST_BUFFERS[offload_stream]
del cast_buffer
#FIXME: This doesn't work in Aimdo because mempool cant clear cache
torch.cuda.empty_cache()
soft_empty_cache()
with wf_context:
cast_buffer = torch.empty((size), dtype=torch.int8, device=device)
STREAM_CAST_BUFFERS[offload_stream] = cast_buffer
@ -1132,9 +1153,7 @@ def reset_cast_buffers():
for offload_stream in STREAM_CAST_BUFFERS:
offload_stream.synchronize()
STREAM_CAST_BUFFERS.clear()
if comfy.memory_management.aimdo_allocator is None:
#Pytorch 2.7 and earlier crashes if you try and empty_cache when mempools exist
torch.cuda.empty_cache()
soft_empty_cache()
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
@ -1284,7 +1303,7 @@ def discard_cuda_async_error():
a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
_ = a + b
torch.cuda.synchronize()
synchronize()
except torch.AcceleratorError:
#Dump it! We already know about it from the synchronous return
pass
@ -1688,6 +1707,12 @@ def lora_compute_dtype(device):
LORA_COMPUTE_DTYPES[device] = dtype
return dtype
def synchronize():
if is_intel_xpu():
torch.xpu.synchronize()
elif torch.cuda.is_available():
torch.cuda.synchronize()
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:
@ -1713,9 +1738,6 @@ def debug_memory_summary():
return torch.cuda.memory.memory_summary()
return ""
#TODO: might be cleaner to put this somewhere else
import threading
class InterruptProcessingException(Exception):
pass

View File

@ -1597,7 +1597,7 @@ class ModelPatcherDynamic(ModelPatcher):
if unpatch_weights:
self.partially_unload_ram(1e32)
self.partially_unload(None)
self.partially_unload(None, 1e32)
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
assert not force_patch_weights #See above

View File

@ -48,6 +48,167 @@ class ExecutionResult(Enum):
class DuplicateNodeError(Exception):
pass
# ======================================================================================
# ADDED: Node grouping helpers for "input-type locality" execution ordering
# --------------------------------------------------------------------------------------
# We cluster ready-to-run nodes by a signature derived from:
# - Declared INPUT_TYPES (required/optional socket types)
# - Upstream linked RETURN_TYPES (when available from prompt links)
#
# This is a SCHEDULING optimization only:
# - It must not change correctness or dependency satisfaction.
# - It only reorders nodes that ExecutionList already deems ready/executable.
# - It is stable to avoid churn and to preserve deterministic behavior.
#
# IMPORTANT: ExecutionList is imported from comfy_execution.graph; we avoid invasive
# changes by using a small subclass + defensive introspection of its internal queues.
# ======================================================================================
def _safe_stringify_type(t):
try:
return str(t)
except Exception:
return repr(t)
def _node_input_signature_from_prompt(prompt: dict, node_id: str):
"""
Build a stable, hashable signature representing a node's *input requirements*.
Includes:
- Declared input socket types via INPUT_TYPES() (required + optional)
- Linked upstream output RETURN_TYPES, when input is a link
This signature is used ONLY for grouping/sorting ready nodes.
"""
node = prompt.get(node_id)
if node is None:
return ("<missing-node>", node_id)
class_type = node.get("class_type")
class_def = nodes.NODE_CLASS_MAPPINGS.get(class_type)
if class_def is None:
return ("<missing-class>", class_type, node_id)
sig = []
# Declared socket types (required/optional)
try:
input_types = class_def.INPUT_TYPES()
except Exception:
input_types = {}
for cat in ("required", "optional"):
cat_dict = input_types.get(cat, {})
if isinstance(cat_dict, dict):
# Sort keys for stability
for k in sorted(cat_dict.keys()):
v = cat_dict[k]
sig.append(("decl", cat, k, _safe_stringify_type(v)))
# Linked upstream return types (helps cluster by latent/model flows)
inputs = node.get("inputs", {}) or {}
if isinstance(inputs, dict):
for k in sorted(inputs.keys()):
v = inputs[k]
if is_link(v) and isinstance(v, (list, tuple)) and len(v) == 2:
src_id, out_idx = v[0], v[1]
src_node = prompt.get(src_id)
if src_node is None:
sig.append(("link", k, "<missing-src-node>"))
continue
src_class_type = src_node.get("class_type")
src_class_def = nodes.NODE_CLASS_MAPPINGS.get(src_class_type)
if src_class_def is None:
sig.append(("link", k, "<missing-src-class>", src_class_type))
continue
ret_types = getattr(src_class_def, "RETURN_TYPES", ())
try:
if isinstance(out_idx, int) and out_idx < len(ret_types):
sig.append(("link", k, _safe_stringify_type(ret_types[out_idx])))
else:
sig.append(("link", k, "<bad-out-idx>", _safe_stringify_type(out_idx)))
except Exception:
sig.append(("link", k, "<ret-type-error>"))
return tuple(sig)
def _try_group_sort_execution_list_ready_nodes(execution_list: ExecutionList, prompt: dict):
"""
Attempt to reorder the ExecutionList's *ready* nodes in-place, grouping by input signature.
This is intentionally defensive because ExecutionList is external; we only touch
well-known/observed internal attributes when they match expected shapes.
Supported patterns (best-effort):
- execution_list.nodes_to_execute : list[node_id, ...]
- execution_list._nodes_to_execute : list[node_id, ...] (fallback)
We DO NOT rewrite heaps/tuples with priority keys, because that risks breaking invariants.
If the internal structure is not a simple list of node_ids, we do nothing.
"""
# Candidate attribute names that (in some ComfyUI revisions) hold ready-to-run node IDs
candidates = ("nodes_to_execute", "_nodes_to_execute")
for attr in candidates:
if not hasattr(execution_list, attr):
continue
value = getattr(execution_list, attr)
# Only operate on a plain list of node ids (strings/ints)
if isinstance(value, list) and all(isinstance(x, (str, int)) for x in value):
# Stable grouping sort:
# primary: signature (to cluster similar input requirements)
# secondary: original order (stability)
# NOTE: include length of signature in key to reduce expensive stringification
indexed = list(enumerate(value))
indexed.sort(
key=lambda it: (
# signature key
_node_input_signature_from_prompt(prompt, str(it[1])),
# keep stable within same signature
it[0],
)
)
new_list = [node_id for _, node_id in indexed]
setattr(execution_list, attr, new_list)
return True
return False
class GroupedExecutionList(ExecutionList):
"""
ADDED: Thin wrapper around ExecutionList that reorders *ready* nodes before staging
to improve model/tensor locality (reduce VRAM/RAM chatter).
This does not change dependency logic; it only reorders nodes that are already ready.
"""
def _apply_group_sort_if_possible(self):
try:
# dynprompt.original_prompt is the canonical prompt graph dict
prompt = getattr(self, "dynprompt", None)
prompt_dict = None
if prompt is not None:
prompt_dict = getattr(prompt, "original_prompt", None)
if isinstance(prompt_dict, dict):
_try_group_sort_execution_list_ready_nodes(self, prompt_dict)
except Exception:
# Must never break execution
pass
# NOTE: stage_node_execution is awaited in the caller in this file, so we keep it async-compatible.
async def stage_node_execution(self):
# Group-sort the ready list *before* choosing next node
self._apply_group_sort_if_possible()
return await super().stage_node_execution()
def add_node(self, node_id):
# Keep original behavior, then regroup for future staging
super().add_node(node_id)
self._apply_group_sort_if_possible()
class IsChangedCache:
def __init__(self, prompt_id: str, dynprompt: DynamicPrompt, outputs_cache: BasicCache):
self.prompt_id = prompt_id
@ -721,7 +882,13 @@ class PromptExecutor:
pending_async_nodes = {} # TODO - Unify this with pending_subgraph_results
ui_node_outputs = {}
executed = set()
execution_list = ExecutionList(dynamic_prompt, self.caches.outputs)
# ==================================================================================
# CHANGED: Use GroupedExecutionList to group ready-to-run nodes by input signature.
# This reduces VRAM/RAM chatter when workflows reuse the same models/tensor types.
# ==================================================================================
execution_list = GroupedExecutionList(dynamic_prompt, self.caches.outputs)
current_outputs = self.caches.outputs.all_node_ids()
for node_id in list(execute_outputs):
execution_list.add_node(node_id)