mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-22 12:20:16 +08:00
Compare commits
8 Commits
d02d0e5744
...
9304e47351
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9304e47351 | ||
|
|
bc606d7d64 | ||
|
|
645ee1881e | ||
|
|
3d082c3206 | ||
|
|
683569de55 | ||
|
|
ea2c117bc3 | ||
|
|
fc4af86068 | ||
|
|
41bcf0619d |
1
.github/workflows/test-ci.yml
vendored
1
.github/workflows/test-ci.yml
vendored
@ -5,6 +5,7 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
- release/**
|
||||
paths-ignore:
|
||||
- 'app/**'
|
||||
- 'input/**'
|
||||
|
||||
4
.github/workflows/test-execution.yml
vendored
4
.github/workflows/test-execution.yml
vendored
@ -2,9 +2,9 @@ name: Execution Tests
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
|
||||
4
.github/workflows/test-launch.yml
vendored
4
.github/workflows/test-launch.yml
vendored
@ -2,9 +2,9 @@ name: Test server launches without errors
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
|
||||
4
.github/workflows/test-unit.yml
vendored
4
.github/workflows/test-unit.yml
vendored
@ -2,9 +2,9 @@ name: Unit Tests
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
pull_request:
|
||||
branches: [ main, master ]
|
||||
branches: [ main, master, release/** ]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
|
||||
1
.github/workflows/update-version.yml
vendored
1
.github/workflows/update-version.yml
vendored
@ -6,6 +6,7 @@ on:
|
||||
- "pyproject.toml"
|
||||
branches:
|
||||
- master
|
||||
- release/**
|
||||
|
||||
jobs:
|
||||
update-version:
|
||||
|
||||
@ -634,8 +634,11 @@ class NextDiT(nn.Module):
|
||||
img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, adaln_input, num_tokens, transformer_options=transformer_options)
|
||||
freqs_cis = freqs_cis.to(img.device)
|
||||
|
||||
transformer_options["total_blocks"] = len(self.layers)
|
||||
transformer_options["block_type"] = "double"
|
||||
img_input = img
|
||||
for i, layer in enumerate(self.layers):
|
||||
transformer_options["block_index"] = i
|
||||
img = layer(img, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
|
||||
if "double_block" in patches:
|
||||
for p in patches["double_block"]:
|
||||
|
||||
@ -322,6 +322,7 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
pooled_projection_dim: int = 768,
|
||||
guidance_embeds: bool = False,
|
||||
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
||||
default_ref_method="index",
|
||||
image_model=None,
|
||||
final_layer=True,
|
||||
dtype=None,
|
||||
@ -334,6 +335,7 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
self.default_ref_method = default_ref_method
|
||||
|
||||
self.pe_embedder = EmbedND(dim=attention_head_dim, theta=10000, axes_dim=list(axes_dims_rope))
|
||||
|
||||
@ -416,7 +418,7 @@ class QwenImageTransformer2DModel(nn.Module):
|
||||
h = 0
|
||||
w = 0
|
||||
index = 0
|
||||
ref_method = kwargs.get("ref_latents_method", "index")
|
||||
ref_method = kwargs.get("ref_latents_method", self.default_ref_method)
|
||||
index_ref_method = (ref_method == "index") or (ref_method == "index_timestep_zero")
|
||||
timestep_zero = ref_method == "index_timestep_zero"
|
||||
for ref in ref_latents:
|
||||
|
||||
@ -568,7 +568,10 @@ class WanModel(torch.nn.Module):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -763,7 +766,10 @@ class VaceWanModel(WanModel):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -862,7 +868,10 @@ class CameraWanModel(WanModel):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
@ -1326,16 +1335,19 @@ class WanModel_S2V(WanModel):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], transformer_options=args["transformer_options"])
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context)
|
||||
x = block(x, e=e0, freqs=freqs, context=context, transformer_options=transformer_options)
|
||||
if audio_emb is not None:
|
||||
x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len)
|
||||
# head
|
||||
@ -1574,7 +1586,10 @@ class HumoWanModel(WanModel):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
|
||||
@ -523,7 +523,10 @@ class AnimateWanModel(WanModel):
|
||||
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
|
||||
@ -28,6 +28,7 @@ from . import supported_models_base
|
||||
from . import latent_formats
|
||||
|
||||
from . import diffusers_convert
|
||||
import comfy.model_management
|
||||
|
||||
class SD15(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
@ -1028,7 +1029,13 @@ class ZImage(Lumina2):
|
||||
|
||||
memory_usage_factor = 2.0
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
if comfy.model_management.extended_fp16_support():
|
||||
self.supported_inference_dtypes = self.supported_inference_dtypes.copy()
|
||||
self.supported_inference_dtypes.insert(1, torch.float16)
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
|
||||
@ -248,7 +248,10 @@ class ModelPatchLoader:
|
||||
config['n_control_layers'] = 15
|
||||
config['additional_in_dim'] = 17
|
||||
config['refiner_control'] = True
|
||||
config['broken'] = True
|
||||
ref_weight = sd.get("control_noise_refiner.0.after_proj.weight", None)
|
||||
if ref_weight is not None:
|
||||
if torch.count_nonzero(ref_weight) == 0:
|
||||
config['broken'] = True
|
||||
model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast, **config)
|
||||
|
||||
model.load_state_dict(sd)
|
||||
@ -310,22 +313,46 @@ class ZImageControlPatch:
|
||||
self.inpaint_image = inpaint_image
|
||||
self.mask = mask
|
||||
self.strength = strength
|
||||
self.encoded_image = self.encode_latent_cond(image)
|
||||
self.encoded_image_size = (image.shape[1], image.shape[2])
|
||||
self.is_inpaint = self.model_patch.model.additional_in_dim > 0
|
||||
|
||||
skip_encoding = False
|
||||
if self.image is not None and self.inpaint_image is not None:
|
||||
if self.image.shape != self.inpaint_image.shape:
|
||||
skip_encoding = True
|
||||
|
||||
if skip_encoding:
|
||||
self.encoded_image = None
|
||||
else:
|
||||
self.encoded_image = self.encode_latent_cond(self.image, self.inpaint_image)
|
||||
if self.image is None:
|
||||
self.encoded_image_size = (self.inpaint_image.shape[1], self.inpaint_image.shape[2])
|
||||
else:
|
||||
self.encoded_image_size = (self.image.shape[1], self.image.shape[2])
|
||||
self.temp_data = None
|
||||
|
||||
def encode_latent_cond(self, control_image, inpaint_image=None):
|
||||
latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(control_image))
|
||||
if self.model_patch.model.additional_in_dim > 0:
|
||||
if self.mask is None:
|
||||
mask_ = torch.zeros_like(latent_image)[:, :1]
|
||||
else:
|
||||
mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none")
|
||||
def encode_latent_cond(self, control_image=None, inpaint_image=None):
|
||||
latent_image = None
|
||||
if control_image is not None:
|
||||
latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(control_image))
|
||||
|
||||
if self.is_inpaint:
|
||||
if inpaint_image is None:
|
||||
inpaint_image = torch.ones_like(control_image) * 0.5
|
||||
|
||||
if self.mask is not None:
|
||||
mask_inpaint = comfy.utils.common_upscale(self.mask.view(self.mask.shape[0], -1, self.mask.shape[-2], self.mask.shape[-1]).mean(dim=1, keepdim=True), inpaint_image.shape[-2], inpaint_image.shape[-3], "bilinear", "center")
|
||||
inpaint_image = ((inpaint_image - 0.5) * mask_inpaint.movedim(1, -1).round()) + 0.5
|
||||
|
||||
inpaint_image_latent = comfy.latent_formats.Flux().process_in(self.vae.encode(inpaint_image))
|
||||
|
||||
if self.mask is None:
|
||||
mask_ = torch.zeros_like(inpaint_image_latent)[:, :1]
|
||||
else:
|
||||
mask_ = comfy.utils.common_upscale(self.mask.view(self.mask.shape[0], -1, self.mask.shape[-2], self.mask.shape[-1]).mean(dim=1, keepdim=True), inpaint_image_latent.shape[-1], inpaint_image_latent.shape[-2], "nearest", "center")
|
||||
|
||||
if latent_image is None:
|
||||
latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(torch.ones_like(inpaint_image) * 0.5))
|
||||
|
||||
return torch.cat([latent_image, mask_, inpaint_image_latent], dim=1)
|
||||
else:
|
||||
return latent_image
|
||||
@ -341,13 +368,18 @@ class ZImageControlPatch:
|
||||
block_type = kwargs.get("block_type", "")
|
||||
spacial_compression = self.vae.spacial_compression_encode()
|
||||
if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression):
|
||||
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center")
|
||||
image_scaled = None
|
||||
if self.image is not None:
|
||||
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center").movedim(1, -1)
|
||||
self.encoded_image_size = (image_scaled.shape[-3], image_scaled.shape[-2])
|
||||
|
||||
inpaint_scaled = None
|
||||
if self.inpaint_image is not None:
|
||||
inpaint_scaled = comfy.utils.common_upscale(self.inpaint_image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center").movedim(1, -1)
|
||||
self.encoded_image_size = (inpaint_scaled.shape[-3], inpaint_scaled.shape[-2])
|
||||
|
||||
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
|
||||
self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1), inpaint_scaled)
|
||||
self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1])
|
||||
self.encoded_image = self.encode_latent_cond(image_scaled, inpaint_scaled)
|
||||
comfy.model_management.load_models_gpu(loaded_models)
|
||||
|
||||
cnet_blocks = self.model_patch.model.n_control_layers
|
||||
@ -388,7 +420,8 @@ class ZImageControlPatch:
|
||||
|
||||
def to(self, device_or_dtype):
|
||||
if isinstance(device_or_dtype, torch.device):
|
||||
self.encoded_image = self.encoded_image.to(device_or_dtype)
|
||||
if self.encoded_image is not None:
|
||||
self.encoded_image = self.encoded_image.to(device_or_dtype)
|
||||
self.temp_data = None
|
||||
return self
|
||||
|
||||
@ -411,9 +444,12 @@ class QwenImageDiffsynthControlnet:
|
||||
|
||||
CATEGORY = "advanced/loaders/qwen"
|
||||
|
||||
def diffsynth_controlnet(self, model, model_patch, vae, image, strength, mask=None):
|
||||
def diffsynth_controlnet(self, model, model_patch, vae, image=None, strength=1.0, inpaint_image=None, mask=None):
|
||||
model_patched = model.clone()
|
||||
image = image[:, :, :, :3]
|
||||
if image is not None:
|
||||
image = image[:, :, :, :3]
|
||||
if inpaint_image is not None:
|
||||
inpaint_image = inpaint_image[:, :, :, :3]
|
||||
if mask is not None:
|
||||
if mask.ndim == 3:
|
||||
mask = mask.unsqueeze(1)
|
||||
@ -422,13 +458,24 @@ class QwenImageDiffsynthControlnet:
|
||||
mask = 1.0 - mask
|
||||
|
||||
if isinstance(model_patch.model, comfy.ldm.lumina.controlnet.ZImage_Control):
|
||||
patch = ZImageControlPatch(model_patch, vae, image, strength, mask=mask)
|
||||
patch = ZImageControlPatch(model_patch, vae, image, strength, inpaint_image=inpaint_image, mask=mask)
|
||||
model_patched.set_model_noise_refiner_patch(patch)
|
||||
model_patched.set_model_double_block_patch(patch)
|
||||
else:
|
||||
model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask))
|
||||
return (model_patched,)
|
||||
|
||||
class ZImageFunControlnet(QwenImageDiffsynthControlnet):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"model_patch": ("MODEL_PATCH",),
|
||||
"vae": ("VAE",),
|
||||
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
||||
},
|
||||
"optional": {"image": ("IMAGE",), "inpaint_image": ("IMAGE",), "mask": ("MASK",)}}
|
||||
|
||||
CATEGORY = "advanced/loaders/zimage"
|
||||
|
||||
class UsoStyleProjectorPatch:
|
||||
def __init__(self, model_patch, encoded_image):
|
||||
@ -476,5 +523,6 @@ class USOStyleReference:
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ModelPatchLoader": ModelPatchLoader,
|
||||
"QwenImageDiffsynthControlnet": QwenImageDiffsynthControlnet,
|
||||
"ZImageFunControlnet": ZImageFunControlnet,
|
||||
"USOStyleReference": USOStyleReference,
|
||||
}
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
comfyui-frontend-package==1.34.8
|
||||
comfyui-frontend-package==1.34.9
|
||||
comfyui-workflow-templates==0.7.59
|
||||
comfyui-embedded-docs==0.3.1
|
||||
torch
|
||||
|
||||
Loading…
Reference in New Issue
Block a user