mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-09 05:40:49 +08:00
Compare commits
8 Commits
d061c19411
...
0096de09af
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0096de09af | ||
|
|
fc0cb10bcb | ||
|
|
b7d7cc1d49 | ||
|
|
79e94544bd | ||
|
|
ce0000c4f2 | ||
|
|
c5cfb34c07 | ||
|
|
43e9509856 | ||
|
|
265b4f0fa1 |
2
.github/workflows/test-ci.yml
vendored
2
.github/workflows/test-ci.yml
vendored
@ -20,6 +20,7 @@ jobs:
|
||||
test-stable:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
max-parallel: 1 # This forces sequential execution
|
||||
matrix:
|
||||
# os: [macos, linux, windows]
|
||||
# os: [macos, linux]
|
||||
@ -74,6 +75,7 @@ jobs:
|
||||
test-unix-nightly:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
max-parallel: 1 # This forces sequential execution
|
||||
matrix:
|
||||
# os: [macos, linux]
|
||||
os: [linux]
|
||||
|
||||
@ -427,12 +427,12 @@ def fp8_linear(self, input):
|
||||
input = torch.clamp(input, min=-448, max=448, out=input)
|
||||
input_fp8 = input.to(dtype).contiguous()
|
||||
layout_params_input = TensorCoreFP8Layout.Params(scale=scale_input, orig_dtype=input_dtype, orig_shape=tuple(input_fp8.shape))
|
||||
quantized_input = QuantizedTensor(input_fp8, TensorCoreFP8Layout, layout_params_input)
|
||||
quantized_input = QuantizedTensor(input_fp8, "TensorCoreFP8Layout", layout_params_input)
|
||||
|
||||
# Wrap weight in QuantizedTensor - this enables unified dispatch
|
||||
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
|
||||
layout_params_weight = TensorCoreFP8Layout.Params(scale=scale_weight, orig_dtype=input_dtype, orig_shape=tuple(w.shape))
|
||||
quantized_weight = QuantizedTensor(w, TensorCoreFP8Layout, layout_params_weight)
|
||||
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
|
||||
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
|
||||
|
||||
uncast_bias_weight(self, w, bias, offload_stream)
|
||||
|
||||
@ -13,7 +13,9 @@ from comfy_api_nodes.util import (
|
||||
poll_op,
|
||||
sync_op,
|
||||
tensor_to_base64_string,
|
||||
upload_video_to_comfyapi,
|
||||
validate_audio_duration,
|
||||
validate_video_duration,
|
||||
)
|
||||
|
||||
|
||||
@ -41,6 +43,12 @@ class Image2VideoInputField(BaseModel):
|
||||
audio_url: str | None = Field(None)
|
||||
|
||||
|
||||
class Reference2VideoInputField(BaseModel):
|
||||
prompt: str = Field(...)
|
||||
negative_prompt: str | None = Field(None)
|
||||
reference_video_urls: list[str] = Field(...)
|
||||
|
||||
|
||||
class Txt2ImageParametersField(BaseModel):
|
||||
size: str = Field(...)
|
||||
n: int = Field(1, description="Number of images to generate.") # we support only value=1
|
||||
@ -76,6 +84,14 @@ class Image2VideoParametersField(BaseModel):
|
||||
shot_type: str = Field("single")
|
||||
|
||||
|
||||
class Reference2VideoParametersField(BaseModel):
|
||||
size: str = Field(...)
|
||||
duration: int = Field(5, ge=5, le=15)
|
||||
shot_type: str = Field("single")
|
||||
seed: int = Field(..., ge=0, le=2147483647)
|
||||
watermark: bool = Field(False)
|
||||
|
||||
|
||||
class Text2ImageTaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
input: Text2ImageInputField = Field(...)
|
||||
@ -100,6 +116,12 @@ class Image2VideoTaskCreationRequest(BaseModel):
|
||||
parameters: Image2VideoParametersField = Field(...)
|
||||
|
||||
|
||||
class Reference2VideoTaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
input: Reference2VideoInputField = Field(...)
|
||||
parameters: Reference2VideoParametersField = Field(...)
|
||||
|
||||
|
||||
class TaskCreationOutputField(BaseModel):
|
||||
task_id: str = Field(...)
|
||||
task_status: str = Field(...)
|
||||
@ -721,6 +743,143 @@ class WanImageToVideoApi(IO.ComfyNode):
|
||||
return IO.NodeOutput(await download_url_to_video_output(response.output.video_url))
|
||||
|
||||
|
||||
class WanReferenceVideoApi(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="WanReferenceVideoApi",
|
||||
display_name="Wan Reference to Video",
|
||||
category="api node/video/Wan",
|
||||
description="Use the character and voice from input videos, combined with a prompt, "
|
||||
"to generate a new video that maintains character consistency.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["wan2.6-r2v"]),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Prompt describing the elements and visual features. Supports English and Chinese. "
|
||||
"Use identifiers such as `character1` and `character2` to refer to the reference characters.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Negative prompt describing what to avoid.",
|
||||
),
|
||||
IO.Autogrow.Input(
|
||||
"reference_videos",
|
||||
template=IO.Autogrow.TemplateNames(
|
||||
IO.Video.Input("reference_video"),
|
||||
names=["character1", "character2", "character3"],
|
||||
min=1,
|
||||
),
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"size",
|
||||
options=[
|
||||
"720p: 1:1 (960x960)",
|
||||
"720p: 16:9 (1280x720)",
|
||||
"720p: 9:16 (720x1280)",
|
||||
"720p: 4:3 (1088x832)",
|
||||
"720p: 3:4 (832x1088)",
|
||||
"1080p: 1:1 (1440x1440)",
|
||||
"1080p: 16:9 (1920x1080)",
|
||||
"1080p: 9:16 (1080x1920)",
|
||||
"1080p: 4:3 (1632x1248)",
|
||||
"1080p: 3:4 (1248x1632)",
|
||||
],
|
||||
),
|
||||
IO.Int.Input(
|
||||
"duration",
|
||||
default=5,
|
||||
min=5,
|
||||
max=10,
|
||||
step=5,
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
step=1,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"shot_type",
|
||||
options=["single", "multi"],
|
||||
tooltip="Specifies the shot type for the generated video, that is, whether the video is a "
|
||||
"single continuous shot or multiple shots with cuts.",
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"watermark",
|
||||
default=False,
|
||||
tooltip="Whether to add an AI-generated watermark to the result.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
reference_videos: IO.Autogrow.Type,
|
||||
size: str,
|
||||
duration: int,
|
||||
seed: int,
|
||||
shot_type: str,
|
||||
watermark: bool,
|
||||
):
|
||||
reference_video_urls = []
|
||||
for i in reference_videos:
|
||||
validate_video_duration(reference_videos[i], min_duration=2, max_duration=30)
|
||||
for i in reference_videos:
|
||||
reference_video_urls.append(await upload_video_to_comfyapi(cls, reference_videos[i]))
|
||||
width, height = RES_IN_PARENS.search(size).groups()
|
||||
initial_response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/wan/api/v1/services/aigc/video-generation/video-synthesis", method="POST"),
|
||||
response_model=TaskCreationResponse,
|
||||
data=Reference2VideoTaskCreationRequest(
|
||||
model=model,
|
||||
input=Reference2VideoInputField(
|
||||
prompt=prompt, negative_prompt=negative_prompt, reference_video_urls=reference_video_urls
|
||||
),
|
||||
parameters=Reference2VideoParametersField(
|
||||
size=f"{width}*{height}",
|
||||
duration=duration,
|
||||
shot_type=shot_type,
|
||||
watermark=watermark,
|
||||
seed=seed,
|
||||
),
|
||||
),
|
||||
)
|
||||
if not initial_response.output:
|
||||
raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}")
|
||||
response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"),
|
||||
response_model=VideoTaskStatusResponse,
|
||||
status_extractor=lambda x: x.output.task_status,
|
||||
poll_interval=6,
|
||||
max_poll_attempts=280,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(response.output.video_url))
|
||||
|
||||
|
||||
class WanApiExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
@ -729,6 +888,7 @@ class WanApiExtension(ComfyExtension):
|
||||
WanImageToImageApi,
|
||||
WanTextToVideoApi,
|
||||
WanImageToVideoApi,
|
||||
WanReferenceVideoApi,
|
||||
]
|
||||
|
||||
|
||||
|
||||
@ -119,7 +119,7 @@ async def upload_video_to_comfyapi(
|
||||
raise ValueError(f"Could not verify video duration from source: {e}") from e
|
||||
|
||||
upload_mime_type = f"video/{container.value.lower()}"
|
||||
filename = f"uploaded_video.{container.value.lower()}"
|
||||
filename = f"{uuid.uuid4()}.{container.value.lower()}"
|
||||
|
||||
# Convert VideoInput to BytesIO using specified container/codec
|
||||
video_bytes_io = BytesIO()
|
||||
|
||||
78
comfy_extras/nodes_sage3.py
Normal file
78
comfy_extras/nodes_sage3.py
Normal file
@ -0,0 +1,78 @@
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy.ldm.modules.attention import get_attention_function
|
||||
from comfy.model_patcher import ModelPatcher
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
from server import PromptServer
|
||||
|
||||
|
||||
class Sage3PatchModel(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="Sage3PatchModel",
|
||||
display_name="Patch SageAttention 3",
|
||||
description="Patch the model to use `attention3_sage` during the middle blocks and steps, keeping the default attention function for the first/last blocks and steps",
|
||||
category="_for_testing",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
],
|
||||
outputs=[io.Model.Output()],
|
||||
is_experimental=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model: ModelPatcher) -> io.NodeOutput:
|
||||
sage3: Callable | None = get_attention_function("sage3", default=None)
|
||||
|
||||
if sage3 is None:
|
||||
PromptServer.instance.send_progress_text(
|
||||
"`sageattn3` is not installed / available...",
|
||||
cls.hidden.unique_id,
|
||||
)
|
||||
return io.NodeOutput(model)
|
||||
|
||||
def attention_override(func: Callable, *args, **kwargs):
|
||||
transformer_options: dict = kwargs.get("transformer_options", {})
|
||||
|
||||
block_index: int = transformer_options.get("block_index", 0)
|
||||
total_blocks: int = transformer_options.get("total_blocks", 1)
|
||||
|
||||
if block_index == 0 or block_index >= (total_blocks - 1):
|
||||
return func(*args, **kwargs)
|
||||
|
||||
sample_sigmas: torch.Tensor = transformer_options["sample_sigmas"]
|
||||
sigmas: torch.Tensor = transformer_options["sigmas"]
|
||||
|
||||
total_steps: int = sample_sigmas.size(0)
|
||||
step: int = 0
|
||||
|
||||
for i in range(total_steps):
|
||||
if torch.allclose(sample_sigmas[i], sigmas):
|
||||
step = i
|
||||
break
|
||||
|
||||
if step == 0 or step >= (total_steps - 1):
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return sage3(*args, **kwargs)
|
||||
|
||||
model = model.clone()
|
||||
model.model_options["transformer_options"][
|
||||
"optimized_attention_override"
|
||||
] = attention_override
|
||||
|
||||
return io.NodeOutput(model)
|
||||
|
||||
|
||||
class Sage3Extension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [Sage3PatchModel]
|
||||
|
||||
|
||||
async def comfy_entrypoint():
|
||||
return Sage3Extension()
|
||||
@ -1,3 +1,3 @@
|
||||
# This file is automatically generated by the build process when version is
|
||||
# updated in pyproject.toml.
|
||||
__version__ = "0.7.0"
|
||||
__version__ = "0.8.0"
|
||||
|
||||
1
nodes.py
1
nodes.py
@ -2369,6 +2369,7 @@ async def init_builtin_extra_nodes():
|
||||
"nodes_nop.py",
|
||||
"nodes_kandinsky5.py",
|
||||
"nodes_wanmove.py",
|
||||
"nodes_sage3.py",
|
||||
]
|
||||
|
||||
import_failed = []
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "ComfyUI"
|
||||
version = "0.7.0"
|
||||
version = "0.8.0"
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE" }
|
||||
requires-python = ">=3.10"
|
||||
|
||||
@ -21,7 +21,7 @@ psutil
|
||||
alembic
|
||||
SQLAlchemy
|
||||
av>=14.2.0
|
||||
comfy-kitchen>=0.2.2
|
||||
comfy-kitchen>=0.2.3
|
||||
|
||||
#non essential dependencies:
|
||||
kornia>=0.7.1
|
||||
|
||||
Loading…
Reference in New Issue
Block a user