mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-29 15:50:22 +08:00
Compare commits
8 Commits
e411740b1f
...
1a305419a3
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1a305419a3 | ||
|
|
8f40b43e02 | ||
|
|
3b832231bb | ||
|
|
be518db5a7 | ||
|
|
80441eb15e | ||
|
|
07f2462eae | ||
|
|
d150440466 | ||
|
|
4d4701893f |
15
comfy/sd.py
15
comfy/sd.py
@ -1014,6 +1014,7 @@ class CLIPType(Enum):
|
||||
KANDINSKY5 = 22
|
||||
KANDINSKY5_IMAGE = 23
|
||||
NEWBIE = 24
|
||||
FLUX2 = 25
|
||||
|
||||
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
@ -1046,6 +1047,7 @@ class TEModel(Enum):
|
||||
QWEN3_2B = 17
|
||||
GEMMA_3_12B = 18
|
||||
JINA_CLIP_2 = 19
|
||||
QWEN3_8B = 20
|
||||
|
||||
|
||||
def detect_te_model(sd):
|
||||
@ -1089,6 +1091,8 @@ def detect_te_model(sd):
|
||||
return TEModel.QWEN3_4B
|
||||
elif weight.shape[0] == 2048:
|
||||
return TEModel.QWEN3_2B
|
||||
elif weight.shape[0] == 4096:
|
||||
return TEModel.QWEN3_8B
|
||||
if weight.shape[0] == 5120:
|
||||
if "model.layers.39.post_attention_layernorm.weight" in sd:
|
||||
return TEModel.MISTRAL3_24B
|
||||
@ -1214,11 +1218,18 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
clip_target.tokenizer = comfy.text_encoders.flux.Flux2Tokenizer
|
||||
tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None)
|
||||
elif te_model == TEModel.QWEN3_4B:
|
||||
clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer
|
||||
if clip_type == CLIPType.FLUX or clip_type == CLIPType.FLUX2:
|
||||
clip_target.clip = comfy.text_encoders.flux.klein_te(**llama_detect(clip_data), model_type="qwen3_4b")
|
||||
clip_target.tokenizer = comfy.text_encoders.flux.KleinTokenizer
|
||||
else:
|
||||
clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer
|
||||
elif te_model == TEModel.QWEN3_2B:
|
||||
clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer
|
||||
elif te_model == TEModel.QWEN3_8B:
|
||||
clip_target.clip = comfy.text_encoders.flux.klein_te(**llama_detect(clip_data), model_type="qwen3_8b")
|
||||
clip_target.tokenizer = comfy.text_encoders.flux.KleinTokenizer8B
|
||||
elif te_model == TEModel.JINA_CLIP_2:
|
||||
clip_target.clip = comfy.text_encoders.jina_clip_2.JinaClip2TextModelWrapper
|
||||
clip_target.tokenizer = comfy.text_encoders.jina_clip_2.JinaClip2TokenizerWrapper
|
||||
|
||||
@ -3,7 +3,7 @@ import comfy.text_encoders.t5
|
||||
import comfy.text_encoders.sd3_clip
|
||||
import comfy.text_encoders.llama
|
||||
import comfy.model_management
|
||||
from transformers import T5TokenizerFast, LlamaTokenizerFast
|
||||
from transformers import T5TokenizerFast, LlamaTokenizerFast, Qwen2Tokenizer
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
@ -172,3 +172,60 @@ def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False):
|
||||
model_options["num_layers"] = 30
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return Flux2TEModel_
|
||||
|
||||
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
|
||||
|
||||
class Qwen3Tokenizer8B(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
|
||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='qwen3_8b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
|
||||
|
||||
class KleinTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, name="qwen3_4b"):
|
||||
if name == "qwen3_4b":
|
||||
tokenizer = Qwen3Tokenizer
|
||||
elif name == "qwen3_8b":
|
||||
tokenizer = Qwen3Tokenizer8B
|
||||
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name=name, tokenizer=tokenizer)
|
||||
self.llama_template = "<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
|
||||
if llama_template is None:
|
||||
llama_text = self.llama_template.format(text)
|
||||
else:
|
||||
llama_text = llama_template.format(text)
|
||||
|
||||
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
|
||||
return tokens
|
||||
|
||||
class KleinTokenizer8B(KleinTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}, name="qwen3_8b"):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name=name)
|
||||
|
||||
class Qwen3_4BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer=[9, 18, 27], layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
class Qwen3_8BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer=[9, 18, 27], layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_8B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
def klein_te(dtype_llama=None, llama_quantization_metadata=None, model_type="qwen3_4b"):
|
||||
if model_type == "qwen3_4b":
|
||||
model = Qwen3_4BModel
|
||||
elif model_type == "qwen3_8b":
|
||||
model = Qwen3_8BModel
|
||||
|
||||
class Flux2TEModel_(Flux2TEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(device=device, dtype=dtype, name=model_type, model_options=model_options, clip_model=model)
|
||||
return Flux2TEModel_
|
||||
|
||||
@ -99,6 +99,28 @@ class Qwen3_4BConfig:
|
||||
rope_scale = None
|
||||
final_norm: bool = True
|
||||
|
||||
@dataclass
|
||||
class Qwen3_8BConfig:
|
||||
vocab_size: int = 151936
|
||||
hidden_size: int = 4096
|
||||
intermediate_size: int = 12288
|
||||
num_hidden_layers: int = 36
|
||||
num_attention_heads: int = 32
|
||||
num_key_value_heads: int = 8
|
||||
max_position_embeddings: int = 40960
|
||||
rms_norm_eps: float = 1e-6
|
||||
rope_theta: float = 1000000.0
|
||||
transformer_type: str = "llama"
|
||||
head_dim = 128
|
||||
rms_norm_add = False
|
||||
mlp_activation = "silu"
|
||||
qkv_bias = False
|
||||
rope_dims = None
|
||||
q_norm = "gemma3"
|
||||
k_norm = "gemma3"
|
||||
rope_scale = None
|
||||
final_norm: bool = True
|
||||
|
||||
@dataclass
|
||||
class Ovis25_2BConfig:
|
||||
vocab_size: int = 151936
|
||||
@ -628,6 +650,15 @@ class Qwen3_4B(BaseLlama, torch.nn.Module):
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Qwen3_8B(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
config = Qwen3_8BConfig(**config_dict)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
|
||||
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||
self.dtype = dtype
|
||||
|
||||
class Ovis25_2B(BaseLlama, torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
|
||||
@ -118,8 +118,9 @@ class LTXAVTEModel(torch.nn.Module):
|
||||
sdo = comfy.utils.state_dict_prefix_replace(sd, {"text_embedding_projection.aggregate_embed.weight": "text_embedding_projection.weight", "model.diffusion_model.video_embeddings_connector.": "video_embeddings_connector.", "model.diffusion_model.audio_embeddings_connector.": "audio_embeddings_connector."}, filter_keys=True)
|
||||
if len(sdo) == 0:
|
||||
sdo = sd
|
||||
|
||||
return self.load_state_dict(sdo, strict=False)
|
||||
missing, unexpected = self.load_state_dict(sdo, strict=False)
|
||||
missing = [k for k in missing if not k.startswith("gemma3_12b.")] # filter out keys that belong to the main gemma model
|
||||
return (missing, unexpected)
|
||||
|
||||
def memory_estimation_function(self, token_weight_pairs, device=None):
|
||||
constant = 6.0
|
||||
|
||||
@ -929,7 +929,9 @@ def bislerp(samples, width, height):
|
||||
return result.to(orig_dtype)
|
||||
|
||||
def lanczos(samples, width, height):
|
||||
images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
|
||||
#the below API is strict and expects grayscale to be squeezed
|
||||
samples = samples.squeeze(1) if samples.shape[1] == 1 else samples.movedim(1, -1)
|
||||
images = [Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
|
||||
images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images]
|
||||
images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images]
|
||||
result = torch.stack(images)
|
||||
|
||||
160
comfy_api_nodes/apis/meshy.py
Normal file
160
comfy_api_nodes/apis/meshy.py
Normal file
@ -0,0 +1,160 @@
|
||||
from typing import TypedDict
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from comfy_api.latest import Input
|
||||
|
||||
|
||||
class InputShouldRemesh(TypedDict):
|
||||
should_remesh: str
|
||||
topology: str
|
||||
target_polycount: int
|
||||
|
||||
|
||||
class InputShouldTexture(TypedDict):
|
||||
should_texture: str
|
||||
enable_pbr: bool
|
||||
texture_prompt: str
|
||||
texture_image: Input.Image | None
|
||||
|
||||
|
||||
class MeshyTaskResponse(BaseModel):
|
||||
result: str = Field(...)
|
||||
|
||||
|
||||
class MeshyTextToModelRequest(BaseModel):
|
||||
mode: str = Field("preview")
|
||||
prompt: str = Field(..., max_length=600)
|
||||
art_style: str = Field(..., description="'realistic' or 'sculpture'")
|
||||
ai_model: str = Field(...)
|
||||
topology: str | None = Field(..., description="'quad' or 'triangle'")
|
||||
target_polycount: int | None = Field(..., ge=100, le=300000)
|
||||
should_remesh: bool = Field(
|
||||
True,
|
||||
description="False returns the original mesh, ignoring topology and polycount.",
|
||||
)
|
||||
symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'")
|
||||
pose_mode: str = Field(...)
|
||||
seed: int = Field(...)
|
||||
moderation: bool = Field(False)
|
||||
|
||||
|
||||
class MeshyRefineTask(BaseModel):
|
||||
mode: str = Field("refine")
|
||||
preview_task_id: str = Field(...)
|
||||
enable_pbr: bool | None = Field(...)
|
||||
texture_prompt: str | None = Field(...)
|
||||
texture_image_url: str | None = Field(...)
|
||||
ai_model: str = Field(...)
|
||||
moderation: bool = Field(False)
|
||||
|
||||
|
||||
class MeshyImageToModelRequest(BaseModel):
|
||||
image_url: str = Field(...)
|
||||
ai_model: str = Field(...)
|
||||
topology: str | None = Field(..., description="'quad' or 'triangle'")
|
||||
target_polycount: int | None = Field(..., ge=100, le=300000)
|
||||
symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'")
|
||||
should_remesh: bool = Field(
|
||||
True,
|
||||
description="False returns the original mesh, ignoring topology and polycount.",
|
||||
)
|
||||
should_texture: bool = Field(...)
|
||||
enable_pbr: bool | None = Field(...)
|
||||
pose_mode: str = Field(...)
|
||||
texture_prompt: str | None = Field(None, max_length=600)
|
||||
texture_image_url: str | None = Field(None)
|
||||
seed: int = Field(...)
|
||||
moderation: bool = Field(False)
|
||||
|
||||
|
||||
class MeshyMultiImageToModelRequest(BaseModel):
|
||||
image_urls: list[str] = Field(...)
|
||||
ai_model: str = Field(...)
|
||||
topology: str | None = Field(..., description="'quad' or 'triangle'")
|
||||
target_polycount: int | None = Field(..., ge=100, le=300000)
|
||||
symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'")
|
||||
should_remesh: bool = Field(
|
||||
True,
|
||||
description="False returns the original mesh, ignoring topology and polycount.",
|
||||
)
|
||||
should_texture: bool = Field(...)
|
||||
enable_pbr: bool | None = Field(...)
|
||||
pose_mode: str = Field(...)
|
||||
texture_prompt: str | None = Field(None, max_length=600)
|
||||
texture_image_url: str | None = Field(None)
|
||||
seed: int = Field(...)
|
||||
moderation: bool = Field(False)
|
||||
|
||||
|
||||
class MeshyRiggingRequest(BaseModel):
|
||||
input_task_id: str = Field(...)
|
||||
height_meters: float = Field(...)
|
||||
texture_image_url: str | None = Field(...)
|
||||
|
||||
|
||||
class MeshyAnimationRequest(BaseModel):
|
||||
rig_task_id: str = Field(...)
|
||||
action_id: int = Field(...)
|
||||
|
||||
|
||||
class MeshyTextureRequest(BaseModel):
|
||||
input_task_id: str = Field(...)
|
||||
ai_model: str = Field(...)
|
||||
enable_original_uv: bool = Field(...)
|
||||
enable_pbr: bool = Field(...)
|
||||
text_style_prompt: str | None = Field(...)
|
||||
image_style_url: str | None = Field(...)
|
||||
|
||||
|
||||
class MeshyModelsUrls(BaseModel):
|
||||
glb: str = Field("")
|
||||
|
||||
|
||||
class MeshyRiggedModelsUrls(BaseModel):
|
||||
rigged_character_glb_url: str = Field("")
|
||||
|
||||
|
||||
class MeshyAnimatedModelsUrls(BaseModel):
|
||||
animation_glb_url: str = Field("")
|
||||
|
||||
|
||||
class MeshyResultTextureUrls(BaseModel):
|
||||
base_color: str = Field(...)
|
||||
metallic: str | None = Field(None)
|
||||
normal: str | None = Field(None)
|
||||
roughness: str | None = Field(None)
|
||||
|
||||
|
||||
class MeshyTaskError(BaseModel):
|
||||
message: str | None = Field(None)
|
||||
|
||||
|
||||
class MeshyModelResult(BaseModel):
|
||||
id: str = Field(...)
|
||||
type: str = Field(...)
|
||||
model_urls: MeshyModelsUrls = Field(MeshyModelsUrls())
|
||||
thumbnail_url: str = Field(...)
|
||||
video_url: str | None = Field(None)
|
||||
status: str = Field(...)
|
||||
progress: int = Field(0)
|
||||
texture_urls: list[MeshyResultTextureUrls] | None = Field([])
|
||||
task_error: MeshyTaskError | None = Field(None)
|
||||
|
||||
|
||||
class MeshyRiggedResult(BaseModel):
|
||||
id: str = Field(...)
|
||||
type: str = Field(...)
|
||||
status: str = Field(...)
|
||||
progress: int = Field(0)
|
||||
result: MeshyRiggedModelsUrls = Field(MeshyRiggedModelsUrls())
|
||||
task_error: MeshyTaskError | None = Field(None)
|
||||
|
||||
|
||||
class MeshyAnimationResult(BaseModel):
|
||||
id: str = Field(...)
|
||||
type: str = Field(...)
|
||||
status: str = Field(...)
|
||||
progress: int = Field(0)
|
||||
result: MeshyAnimatedModelsUrls = Field(MeshyAnimatedModelsUrls())
|
||||
task_error: MeshyTaskError | None = Field(None)
|
||||
790
comfy_api_nodes/nodes_meshy.py
Normal file
790
comfy_api_nodes/nodes_meshy.py
Normal file
@ -0,0 +1,790 @@
|
||||
import os
|
||||
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api_nodes.apis.meshy import (
|
||||
InputShouldRemesh,
|
||||
InputShouldTexture,
|
||||
MeshyAnimationRequest,
|
||||
MeshyAnimationResult,
|
||||
MeshyImageToModelRequest,
|
||||
MeshyModelResult,
|
||||
MeshyMultiImageToModelRequest,
|
||||
MeshyRefineTask,
|
||||
MeshyRiggedResult,
|
||||
MeshyRiggingRequest,
|
||||
MeshyTaskResponse,
|
||||
MeshyTextToModelRequest,
|
||||
MeshyTextureRequest,
|
||||
)
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
download_url_to_bytesio,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_images_to_comfyapi,
|
||||
validate_string,
|
||||
)
|
||||
from folder_paths import get_output_directory
|
||||
|
||||
|
||||
class MeshyTextToModelNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyTextToModelNode",
|
||||
display_name="Meshy: Text to Model",
|
||||
category="api node/3d/Meshy",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.String.Input("prompt", multiline=True, default=""),
|
||||
IO.Combo.Input("style", options=["realistic", "sculpture"]),
|
||||
IO.DynamicCombo.Input(
|
||||
"should_remesh",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Combo.Input("topology", options=["triangle", "quad"]),
|
||||
IO.Int.Input(
|
||||
"target_polycount",
|
||||
default=300000,
|
||||
min=100,
|
||||
max=300000,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="When set to false, returns an unprocessed triangular mesh.",
|
||||
),
|
||||
IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]),
|
||||
IO.Combo.Input(
|
||||
"pose_mode",
|
||||
options=["", "A-pose", "T-pose"],
|
||||
tooltip="Specify the pose mode for the generated model.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.8}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
style: str,
|
||||
should_remesh: InputShouldRemesh,
|
||||
symmetry_mode: str,
|
||||
pose_mode: str,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, field_name="prompt", min_length=1, max_length=600)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/meshy/openapi/v2/text-to-3d", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyTextToModelRequest(
|
||||
prompt=prompt,
|
||||
art_style=style,
|
||||
ai_model=model,
|
||||
topology=should_remesh.get("topology", None),
|
||||
target_polycount=should_remesh.get("target_polycount", None),
|
||||
should_remesh=should_remesh["should_remesh"] == "true",
|
||||
symmetry_mode=symmetry_mode,
|
||||
pose_mode=pose_mode.lower(),
|
||||
seed=seed,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{response.result}"),
|
||||
response_model=MeshyModelResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyRefineNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyRefineNode",
|
||||
display_name="Meshy: Refine Draft Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Refine a previously created draft model.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
|
||||
IO.Boolean.Input(
|
||||
"enable_pbr",
|
||||
default=False,
|
||||
tooltip="Generate PBR Maps (metallic, roughness, normal) in addition to the base color. "
|
||||
"Note: this should be set to false when using Sculpture style, "
|
||||
"as Sculpture style generates its own set of PBR maps.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"texture_prompt",
|
||||
default="",
|
||||
multiline=True,
|
||||
tooltip="Provide a text prompt to guide the texturing process. "
|
||||
"Maximum 600 characters. Cannot be used at the same time as 'texture_image'.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"texture_image",
|
||||
tooltip="Only one of 'texture_image' or 'texture_prompt' may be used at the same time.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
meshy_task_id: str,
|
||||
enable_pbr: bool,
|
||||
texture_prompt: str,
|
||||
texture_image: Input.Image | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
if texture_prompt and texture_image is not None:
|
||||
raise ValueError("texture_prompt and texture_image cannot be used at the same time")
|
||||
texture_image_url = None
|
||||
if texture_prompt:
|
||||
validate_string(texture_prompt, field_name="texture_prompt", max_length=600)
|
||||
if texture_image is not None:
|
||||
texture_image_url = (await upload_images_to_comfyapi(cls, texture_image, wait_label="Uploading texture"))[0]
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v2/text-to-3d", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyRefineTask(
|
||||
preview_task_id=meshy_task_id,
|
||||
enable_pbr=enable_pbr,
|
||||
texture_prompt=texture_prompt if texture_prompt else None,
|
||||
texture_image_url=texture_image_url,
|
||||
ai_model=model,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{response.result}"),
|
||||
response_model=MeshyModelResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyImageToModelNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyImageToModelNode",
|
||||
display_name="Meshy: Image to Model",
|
||||
category="api node/3d/Meshy",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Image.Input("image"),
|
||||
IO.DynamicCombo.Input(
|
||||
"should_remesh",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Combo.Input("topology", options=["triangle", "quad"]),
|
||||
IO.Int.Input(
|
||||
"target_polycount",
|
||||
default=300000,
|
||||
min=100,
|
||||
max=300000,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="When set to false, returns an unprocessed triangular mesh.",
|
||||
),
|
||||
IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]),
|
||||
IO.DynamicCombo.Input(
|
||||
"should_texture",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Boolean.Input(
|
||||
"enable_pbr",
|
||||
default=False,
|
||||
tooltip="Generate PBR Maps (metallic, roughness, normal) "
|
||||
"in addition to the base color.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"texture_prompt",
|
||||
default="",
|
||||
multiline=True,
|
||||
tooltip="Provide a text prompt to guide the texturing process. "
|
||||
"Maximum 600 characters. Cannot be used at the same time as 'texture_image'.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"texture_image",
|
||||
tooltip="Only one of 'texture_image' or 'texture_prompt' "
|
||||
"may be used at the same time.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="Determines whether textures are generated. "
|
||||
"Setting it to false skips the texture phase and returns a mesh without textures.",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"pose_mode",
|
||||
options=["", "A-pose", "T-pose"],
|
||||
tooltip="Specify the pose mode for the generated model.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["should_texture"]),
|
||||
expr="""
|
||||
(
|
||||
$prices := {"true": 1.2, "false": 0.8};
|
||||
{"type":"usd","usd": $lookup($prices, widgets.should_texture)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
image: Input.Image,
|
||||
should_remesh: InputShouldRemesh,
|
||||
symmetry_mode: str,
|
||||
should_texture: InputShouldTexture,
|
||||
pose_mode: str,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
texture = should_texture["should_texture"] == "true"
|
||||
texture_image_url = texture_prompt = None
|
||||
if texture:
|
||||
if should_texture["texture_prompt"] and should_texture["texture_image"] is not None:
|
||||
raise ValueError("texture_prompt and texture_image cannot be used at the same time")
|
||||
if should_texture["texture_prompt"]:
|
||||
validate_string(should_texture["texture_prompt"], field_name="texture_prompt", max_length=600)
|
||||
texture_prompt = should_texture["texture_prompt"]
|
||||
if should_texture["texture_image"] is not None:
|
||||
texture_image_url = (
|
||||
await upload_images_to_comfyapi(
|
||||
cls, should_texture["texture_image"], wait_label="Uploading texture"
|
||||
)
|
||||
)[0]
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/meshy/openapi/v1/image-to-3d", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyImageToModelRequest(
|
||||
image_url=(await upload_images_to_comfyapi(cls, image, wait_label="Uploading base image"))[0],
|
||||
ai_model=model,
|
||||
topology=should_remesh.get("topology", None),
|
||||
target_polycount=should_remesh.get("target_polycount", None),
|
||||
symmetry_mode=symmetry_mode,
|
||||
should_remesh=should_remesh["should_remesh"] == "true",
|
||||
should_texture=texture,
|
||||
enable_pbr=should_texture.get("enable_pbr", None),
|
||||
pose_mode=pose_mode.lower(),
|
||||
texture_prompt=texture_prompt,
|
||||
texture_image_url=texture_image_url,
|
||||
seed=seed,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/image-to-3d/{response.result}"),
|
||||
response_model=MeshyModelResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyMultiImageToModelNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyMultiImageToModelNode",
|
||||
display_name="Meshy: Multi-Image to Model",
|
||||
category="api node/3d/Meshy",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Autogrow.Input(
|
||||
"images",
|
||||
template=IO.Autogrow.TemplatePrefix(IO.Image.Input("image"), prefix="image", min=2, max=4),
|
||||
),
|
||||
IO.DynamicCombo.Input(
|
||||
"should_remesh",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Combo.Input("topology", options=["triangle", "quad"]),
|
||||
IO.Int.Input(
|
||||
"target_polycount",
|
||||
default=300000,
|
||||
min=100,
|
||||
max=300000,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="When set to false, returns an unprocessed triangular mesh.",
|
||||
),
|
||||
IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]),
|
||||
IO.DynamicCombo.Input(
|
||||
"should_texture",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Boolean.Input(
|
||||
"enable_pbr",
|
||||
default=False,
|
||||
tooltip="Generate PBR Maps (metallic, roughness, normal) "
|
||||
"in addition to the base color.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"texture_prompt",
|
||||
default="",
|
||||
multiline=True,
|
||||
tooltip="Provide a text prompt to guide the texturing process. "
|
||||
"Maximum 600 characters. Cannot be used at the same time as 'texture_image'.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"texture_image",
|
||||
tooltip="Only one of 'texture_image' or 'texture_prompt' "
|
||||
"may be used at the same time.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="Determines whether textures are generated. "
|
||||
"Setting it to false skips the texture phase and returns a mesh without textures.",
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"pose_mode",
|
||||
options=["", "A-pose", "T-pose"],
|
||||
tooltip="Specify the pose mode for the generated model.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["should_texture"]),
|
||||
expr="""
|
||||
(
|
||||
$prices := {"true": 0.6, "false": 0.2};
|
||||
{"type":"usd","usd": $lookup($prices, widgets.should_texture)}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
images: IO.Autogrow.Type,
|
||||
should_remesh: InputShouldRemesh,
|
||||
symmetry_mode: str,
|
||||
should_texture: InputShouldTexture,
|
||||
pose_mode: str,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
texture = should_texture["should_texture"] == "true"
|
||||
texture_image_url = texture_prompt = None
|
||||
if texture:
|
||||
if should_texture["texture_prompt"] and should_texture["texture_image"] is not None:
|
||||
raise ValueError("texture_prompt and texture_image cannot be used at the same time")
|
||||
if should_texture["texture_prompt"]:
|
||||
validate_string(should_texture["texture_prompt"], field_name="texture_prompt", max_length=600)
|
||||
texture_prompt = should_texture["texture_prompt"]
|
||||
if should_texture["texture_image"] is not None:
|
||||
texture_image_url = (
|
||||
await upload_images_to_comfyapi(
|
||||
cls, should_texture["texture_image"], wait_label="Uploading texture"
|
||||
)
|
||||
)[0]
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/meshy/openapi/v1/multi-image-to-3d", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyMultiImageToModelRequest(
|
||||
image_urls=await upload_images_to_comfyapi(
|
||||
cls, list(images.values()), wait_label="Uploading base images"
|
||||
),
|
||||
ai_model=model,
|
||||
topology=should_remesh.get("topology", None),
|
||||
target_polycount=should_remesh.get("target_polycount", None),
|
||||
symmetry_mode=symmetry_mode,
|
||||
should_remesh=should_remesh["should_remesh"] == "true",
|
||||
should_texture=texture,
|
||||
enable_pbr=should_texture.get("enable_pbr", None),
|
||||
pose_mode=pose_mode.lower(),
|
||||
texture_prompt=texture_prompt,
|
||||
texture_image_url=texture_image_url,
|
||||
seed=seed,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/multi-image-to-3d/{response.result}"),
|
||||
response_model=MeshyModelResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyRigModelNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyRigModelNode",
|
||||
display_name="Meshy: Rig Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Provides a rigged character in standard formats. "
|
||||
"Auto-rigging is currently not suitable for untextured meshes, non-humanoid assets, "
|
||||
"or humanoid assets with unclear limb and body structure.",
|
||||
inputs=[
|
||||
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
|
||||
IO.Float.Input(
|
||||
"height_meters",
|
||||
min=0.1,
|
||||
max=15.0,
|
||||
default=1.7,
|
||||
tooltip="The approximate height of the character model in meters. "
|
||||
"This aids in scaling and rigging accuracy.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"texture_image",
|
||||
tooltip="The model's UV-unwrapped base color texture image.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MESHY_RIGGED_TASK_ID").Output(display_name="rig_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.2}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
meshy_task_id: str,
|
||||
height_meters: float,
|
||||
texture_image: Input.Image | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
texture_image_url = None
|
||||
if texture_image is not None:
|
||||
texture_image_url = (await upload_images_to_comfyapi(cls, texture_image, wait_label="Uploading texture"))[0]
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/rigging", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyRiggingRequest(
|
||||
input_task_id=meshy_task_id,
|
||||
height_meters=height_meters,
|
||||
texture_image_url=texture_image_url,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/rigging/{response.result}"),
|
||||
response_model=MeshyRiggedResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(
|
||||
result.result.rigged_character_glb_url, os.path.join(get_output_directory(), model_file)
|
||||
)
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyAnimateModelNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyAnimateModelNode",
|
||||
display_name="Meshy: Animate Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Apply a specific animation action to a previously rigged character.",
|
||||
inputs=[
|
||||
IO.Custom("MESHY_RIGGED_TASK_ID").Input("rig_task_id"),
|
||||
IO.Int.Input(
|
||||
"action_id",
|
||||
default=0,
|
||||
min=0,
|
||||
max=696,
|
||||
tooltip="Visit https://docs.meshy.ai/en/api/animation-library for a list of available values.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.12}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
rig_task_id: str,
|
||||
action_id: int,
|
||||
) -> IO.NodeOutput:
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/animations", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyAnimationRequest(
|
||||
rig_task_id=rig_task_id,
|
||||
action_id=action_id,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/animations/{response.result}"),
|
||||
response_model=MeshyAnimationResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.result.animation_glb_url, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyTextureNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MeshyTextureNode",
|
||||
display_name="Meshy: Texture Model",
|
||||
category="api node/3d/Meshy",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
|
||||
IO.Boolean.Input(
|
||||
"enable_original_uv",
|
||||
default=True,
|
||||
tooltip="Use the original UV of the model instead of generating new UVs. "
|
||||
"When enabled, Meshy preserves existing textures from the uploaded model. "
|
||||
"If the model has no original UV, the quality of the output might not be as good.",
|
||||
),
|
||||
IO.Boolean.Input("pbr", default=False),
|
||||
IO.String.Input(
|
||||
"text_style_prompt",
|
||||
default="",
|
||||
multiline=True,
|
||||
tooltip="Describe your desired texture style of the object using text. Maximum 600 characters."
|
||||
"Maximum 600 characters. Cannot be used at the same time as 'image_style'.",
|
||||
),
|
||||
IO.Image.Input(
|
||||
"image_style",
|
||||
optional=True,
|
||||
tooltip="A 2d image to guide the texturing process. "
|
||||
"Can not be used at the same time with 'text_style_prompt'.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"),
|
||||
IO.Custom("MODEL_TASK_ID").Output(display_name="meshy_task_id"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_output_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.4}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
meshy_task_id: str,
|
||||
enable_original_uv: bool,
|
||||
pbr: bool,
|
||||
text_style_prompt: str,
|
||||
image_style: Input.Image | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
if text_style_prompt and image_style is not None:
|
||||
raise ValueError("text_style_prompt and image_style cannot be used at the same time")
|
||||
if not text_style_prompt and image_style is None:
|
||||
raise ValueError("Either text_style_prompt or image_style is required")
|
||||
image_style_url = None
|
||||
if image_style is not None:
|
||||
image_style_url = (await upload_images_to_comfyapi(cls, image_style, wait_label="Uploading style"))[0]
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/retexture", method="POST"),
|
||||
response_model=MeshyTaskResponse,
|
||||
data=MeshyTextureRequest(
|
||||
input_task_id=meshy_task_id,
|
||||
ai_model=model,
|
||||
enable_original_uv=enable_original_uv,
|
||||
enable_pbr=pbr,
|
||||
text_style_prompt=text_style_prompt if text_style_prompt else None,
|
||||
image_style_url=image_style_url,
|
||||
),
|
||||
)
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/retexture/{response.result}"),
|
||||
response_model=MeshyModelResult,
|
||||
status_extractor=lambda r: r.status,
|
||||
progress_extractor=lambda r: r.progress,
|
||||
)
|
||||
model_file = f"meshy_model_{response.result}.glb"
|
||||
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
|
||||
return IO.NodeOutput(model_file, response.result)
|
||||
|
||||
|
||||
class MeshyExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
MeshyTextToModelNode,
|
||||
MeshyRefineNode,
|
||||
MeshyImageToModelNode,
|
||||
MeshyMultiImageToModelNode,
|
||||
MeshyRigModelNode,
|
||||
MeshyAnimateModelNode,
|
||||
MeshyTextureNode,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> MeshyExtension:
|
||||
return MeshyExtension()
|
||||
@ -43,7 +43,7 @@ class UploadResponse(BaseModel):
|
||||
|
||||
async def upload_images_to_comfyapi(
|
||||
cls: type[IO.ComfyNode],
|
||||
image: torch.Tensor,
|
||||
image: torch.Tensor | list[torch.Tensor],
|
||||
*,
|
||||
max_images: int = 8,
|
||||
mime_type: str | None = None,
|
||||
@ -55,15 +55,28 @@ async def upload_images_to_comfyapi(
|
||||
Uploads images to ComfyUI API and returns download URLs.
|
||||
To upload multiple images, stack them in the batch dimension first.
|
||||
"""
|
||||
tensors: list[torch.Tensor] = []
|
||||
if isinstance(image, list):
|
||||
for img in image:
|
||||
is_batch = len(img.shape) > 3
|
||||
if is_batch:
|
||||
tensors.extend(img[i] for i in range(img.shape[0]))
|
||||
else:
|
||||
tensors.append(img)
|
||||
else:
|
||||
is_batch = len(image.shape) > 3
|
||||
if is_batch:
|
||||
tensors.extend(image[i] for i in range(image.shape[0]))
|
||||
else:
|
||||
tensors.append(image)
|
||||
|
||||
# if batched, try to upload each file if max_images is greater than 0
|
||||
download_urls: list[str] = []
|
||||
is_batch = len(image.shape) > 3
|
||||
batch_len = image.shape[0] if is_batch else 1
|
||||
num_to_upload = min(batch_len, max_images)
|
||||
num_to_upload = min(len(tensors), max_images)
|
||||
batch_start_ts = time.monotonic()
|
||||
|
||||
for idx in range(num_to_upload):
|
||||
tensor = image[idx] if is_batch else image
|
||||
tensor = tensors[idx]
|
||||
img_io = tensor_to_bytesio(tensor, total_pixels=total_pixels, mime_type=mime_type)
|
||||
|
||||
effective_label = wait_label
|
||||
|
||||
@ -1,3 +1,3 @@
|
||||
# This file is automatically generated by the build process when version is
|
||||
# updated in pyproject.toml.
|
||||
__version__ = "0.9.1"
|
||||
__version__ = "0.9.2"
|
||||
|
||||
@ -430,7 +430,11 @@ def get_save_image_path(filename_prefix: str, output_dir: str, image_width=0, im
|
||||
prefix_len = len(os.path.basename(filename_prefix))
|
||||
prefix = filename[:prefix_len + 1]
|
||||
try:
|
||||
digits = int(filename[prefix_len + 1:].split('_')[0])
|
||||
# Extract the part after prefix (e.g., "00001_.png" or "00001.png")
|
||||
remainder = filename[prefix_len + 1:]
|
||||
# Try to parse digits - handle both "00001_" and "00001." formats
|
||||
digits_str = remainder.split('_')[0].split('.')[0]
|
||||
digits = int(digits_str)
|
||||
except:
|
||||
digits = 0
|
||||
return digits, prefix
|
||||
@ -464,7 +468,18 @@ def get_save_image_path(filename_prefix: str, output_dir: str, image_width=0, im
|
||||
raise Exception(err)
|
||||
|
||||
try:
|
||||
counter = max(filter(lambda a: os.path.normcase(a[1][:-1]) == os.path.normcase(filename) and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
|
||||
# Support both old format (filename_) and new format (filename) for backward compatibility
|
||||
def matches_filename(a):
|
||||
prefix = a[1]
|
||||
# Match new format: "filename" (exact match)
|
||||
if os.path.normcase(prefix) == os.path.normcase(filename):
|
||||
return True
|
||||
# Match old format: "filename_" (with trailing underscore)
|
||||
if prefix.endswith("_") and os.path.normcase(prefix[:-1]) == os.path.normcase(filename):
|
||||
return True
|
||||
return False
|
||||
|
||||
counter = max(filter(lambda a: matches_filename(a), map(map_filename, os.listdir(full_output_folder))))[0] + 1
|
||||
except ValueError:
|
||||
counter = 1
|
||||
except FileNotFoundError:
|
||||
|
||||
6
nodes.py
6
nodes.py
@ -493,7 +493,7 @@ class SaveLatent:
|
||||
for x in extra_pnginfo:
|
||||
metadata[x] = json.dumps(extra_pnginfo[x])
|
||||
|
||||
file = f"{filename}_{counter:05}_.latent"
|
||||
file = f"{filename}_{counter:05}.latent"
|
||||
|
||||
results: list[FileLocator] = []
|
||||
results.append({
|
||||
@ -788,6 +788,7 @@ class VAELoader:
|
||||
|
||||
#TODO: scale factor?
|
||||
def load_vae(self, vae_name):
|
||||
metadata = None
|
||||
if vae_name == "pixel_space":
|
||||
sd = {}
|
||||
sd["pixel_space_vae"] = torch.tensor(1.0)
|
||||
@ -1620,7 +1621,7 @@ class SaveImage:
|
||||
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
||||
|
||||
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
|
||||
file = f"{filename_with_batch_num}_{counter:05}_.png"
|
||||
file = f"{filename_with_batch_num}_{counter:05}.png"
|
||||
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
|
||||
results.append({
|
||||
"filename": file,
|
||||
@ -2400,6 +2401,7 @@ async def init_builtin_api_nodes():
|
||||
"nodes_sora.py",
|
||||
"nodes_topaz.py",
|
||||
"nodes_tripo.py",
|
||||
"nodes_meshy.py",
|
||||
"nodes_moonvalley.py",
|
||||
"nodes_rodin.py",
|
||||
"nodes_gemini.py",
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "ComfyUI"
|
||||
version = "0.9.1"
|
||||
version = "0.9.2"
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE" }
|
||||
requires-python = ">=3.10"
|
||||
|
||||
91
tests-unit/folder_paths_test/test_filename_format.py
Normal file
91
tests-unit/folder_paths_test/test_filename_format.py
Normal file
@ -0,0 +1,91 @@
|
||||
"""Tests for output filename format.
|
||||
|
||||
Relates to issue #1389: Trailing underscore in output file names
|
||||
"""
|
||||
|
||||
import os
|
||||
import tempfile
|
||||
import pytest
|
||||
|
||||
import folder_paths
|
||||
|
||||
|
||||
class TestFilenameFormat:
|
||||
"""Test output filename format without trailing underscore."""
|
||||
|
||||
def test_new_filename_format_no_trailing_underscore(self):
|
||||
"""New files should not have trailing underscore before extension."""
|
||||
# Expected format: "prefix_00001.png" not "prefix_00001_.png"
|
||||
filename = "ComfyUI"
|
||||
counter = 1
|
||||
new_format = f"{filename}_{counter:05}.png"
|
||||
|
||||
assert new_format == "ComfyUI_00001.png"
|
||||
assert not new_format.endswith("_.png"), "Filename should not have trailing underscore"
|
||||
|
||||
def test_get_save_image_path_backward_compatible(self):
|
||||
"""get_save_image_path should work with both old and new format files."""
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
# Create files with old format (trailing underscore)
|
||||
old_format_files = [
|
||||
"TestPrefix_00001_.png",
|
||||
"TestPrefix_00002_.png",
|
||||
]
|
||||
for f in old_format_files:
|
||||
open(os.path.join(tmpdir, f), 'w').close()
|
||||
|
||||
# get_save_image_path should recognize old format and return next counter
|
||||
full_path, filename, counter, subfolder, _ = folder_paths.get_save_image_path(
|
||||
"TestPrefix", tmpdir
|
||||
)
|
||||
|
||||
# Counter should be 3 (after 00001 and 00002)
|
||||
assert counter == 3
|
||||
|
||||
def test_get_save_image_path_new_format(self):
|
||||
"""get_save_image_path should work with new format files (no trailing underscore)."""
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
# Create files with new format (no trailing underscore)
|
||||
new_format_files = [
|
||||
"NewPrefix_00001.png",
|
||||
"NewPrefix_00002.png",
|
||||
"NewPrefix_00003.png",
|
||||
]
|
||||
for f in new_format_files:
|
||||
open(os.path.join(tmpdir, f), 'w').close()
|
||||
|
||||
# get_save_image_path should recognize new format
|
||||
full_path, filename, counter, subfolder, _ = folder_paths.get_save_image_path(
|
||||
"NewPrefix", tmpdir
|
||||
)
|
||||
|
||||
# Counter should be 4 (after 00001, 00002, 00003)
|
||||
assert counter == 4
|
||||
|
||||
def test_get_save_image_path_mixed_formats(self):
|
||||
"""get_save_image_path should handle mixed old and new format files."""
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
# Mix of old and new format files
|
||||
files = [
|
||||
"MixedPrefix_00001_.png", # old format
|
||||
"MixedPrefix_00002.png", # new format
|
||||
"MixedPrefix_00003_.png", # old format
|
||||
]
|
||||
for f in files:
|
||||
open(os.path.join(tmpdir, f), 'w').close()
|
||||
|
||||
full_path, filename, counter, subfolder, _ = folder_paths.get_save_image_path(
|
||||
"MixedPrefix", tmpdir
|
||||
)
|
||||
|
||||
# Counter should be 4 (recognizing both formats)
|
||||
assert counter == 4
|
||||
|
||||
def test_get_save_image_path_empty_directory(self):
|
||||
"""get_save_image_path should return counter 1 for empty directory."""
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
full_path, filename, counter, subfolder, _ = folder_paths.get_save_image_path(
|
||||
"EmptyDir", tmpdir
|
||||
)
|
||||
|
||||
assert counter == 1
|
||||
Loading…
Reference in New Issue
Block a user