Compare commits

...

4 Commits

Author SHA1 Message Date
Terry Jia
791164416a
Merge c7843f888f into 0fd10ffa09 2026-01-18 03:28:43 +02:00
Theephop
0fd10ffa09
fix: use .cpu() for waveform conversion in AudioFrame creation (#11787)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
2026-01-17 20:18:24 -05:00
Alex Butler
00c775950a
Update readme rdna3 nightly url (#11937) 2026-01-17 20:18:04 -05:00
Terry Jia
c7843f888f Boundingbox widget 2026-01-15 22:25:38 -05:00
4 changed files with 51 additions and 7 deletions

View File

@ -240,7 +240,7 @@ These have less hardware support than the builds above but they work on windows.
RDNA 3 (RX 7000 series):
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx110X-dgpu/```
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx110X-all/```
RDNA 3.5 (Strix halo/Ryzen AI Max+ 365):

View File

@ -374,7 +374,7 @@ class VideoFromComponents(VideoInput):
if audio_stream and self.__components.audio:
waveform = self.__components.audio['waveform']
waveform = waveform[:, :, :math.ceil((audio_sample_rate / frame_rate) * self.__components.images.shape[0])]
frame = av.AudioFrame.from_ndarray(waveform.movedim(2, 1).reshape(1, -1).float().numpy(), format='flt', layout='mono' if waveform.shape[1] == 1 else 'stereo')
frame = av.AudioFrame.from_ndarray(waveform.movedim(2, 1).reshape(1, -1).float().cpu().numpy(), format='flt', layout='mono' if waveform.shape[1] == 1 else 'stereo')
frame.sample_rate = audio_sample_rate
frame.pts = 0
output.mux(audio_stream.encode(frame))

View File

@ -1125,6 +1125,25 @@ class ImageCompare(ComfyTypeI):
def as_dict(self):
return super().as_dict()
@comfytype(io_type="BOUNDINGBOX")
class BoundingBox(ComfyTypeIO):
Type = dict
class Input(WidgetInput):
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None,
socketless: bool=True, default: dict=None, component: str=None):
super().__init__(id, display_name, optional, tooltip, None, default, socketless)
self.component = component
if default is None:
self.default = {"x": 0, "y": 0, "width": 512, "height": 512}
def as_dict(self):
d = super().as_dict()
if self.component:
d["component"] = self.component
return d
DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {}
def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]):
DYNAMIC_INPUT_LOOKUP[io_type] = func
@ -2046,4 +2065,5 @@ __all__ = [
"ImageCompare",
"PriceBadgeDepends",
"PriceBadge",
"BoundingBox",
]

View File

@ -26,16 +26,18 @@ class ImageCrop(IO.ComfyNode):
category="image/transform",
inputs=[
IO.Image.Input("image"),
IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
IO.BoundingBox.Input("crop_region", component="ImageCrop"),
],
outputs=[IO.Image.Output()],
)
@classmethod
def execute(cls, image, width, height, x, y) -> IO.NodeOutput:
def execute(cls, image, crop_region) -> IO.NodeOutput:
x = crop_region.get("x", 0)
y = crop_region.get("y", 0)
width = crop_region.get("width", 512)
height = crop_region.get("height", 512)
x = min(x, image.shape[2] - 1)
y = min(y, image.shape[1] - 1)
to_x = width + x
@ -46,6 +48,27 @@ class ImageCrop(IO.ComfyNode):
crop = execute # TODO: remove
class IntToBoundingBox(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="IntToBoundingBox",
display_name="INT to Bounding Box",
category="utils",
inputs=[
IO.Int.Input("x", default=0, min=0, max=MAX_RESOLUTION),
IO.Int.Input("y", default=0, min=0, max=MAX_RESOLUTION),
IO.Int.Input("width", default=512, min=1, max=MAX_RESOLUTION),
IO.Int.Input("height", default=512, min=1, max=MAX_RESOLUTION),
],
outputs=[IO.BoundingBox.Output(display_name="BOUNDINGBOX")],
)
@classmethod
def execute(cls, x, y, width, height) -> IO.NodeOutput:
return IO.NodeOutput({"x": x, "y": y, "width": width, "height": height})
class RepeatImageBatch(IO.ComfyNode):
@classmethod
def define_schema(cls):
@ -628,6 +651,7 @@ class ImagesExtension(ComfyExtension):
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
ImageCrop,
IntToBoundingBox,
RepeatImageBatch,
ImageFromBatch,
ImageAddNoise,