Compare commits

...

6 Commits

Author SHA1 Message Date
Jedrzej Kosinski
b4bc854398 Comment out test logic nodes
Some checks failed
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Build package / Build Test (3.10) (push) Has been cancelled
Build package / Build Test (3.11) (push) Has been cancelled
Build package / Build Test (3.12) (push) Has been cancelled
Build package / Build Test (3.13) (push) Has been cancelled
Build package / Build Test (3.9) (push) Has been cancelled
2025-12-18 16:30:41 -08:00
Jedrzej Kosinski
dd4786bcf8 Make lazy status for specific inputs on DynamicInputs work by having the values of the dictionary for check_lazy_status be a tuple, where the second element is the key of the input that can be returned 2025-12-18 16:20:28 -08:00
Jedrzej Kosinski
bef33564c1 Merge branch 'master' into v3-improvements 2025-12-18 15:26:39 -08:00
comfyanonymous
6a2678ac65
Trim/pad channels in VAE code. (#11406) 2025-12-18 18:22:38 -05:00
comfyanonymous
e4fb3a3572
Support loading Wan/Qwen VAEs with different in/out channels. (#11405) 2025-12-18 17:45:33 -05:00
ComfyUI Wiki
e8ebbe668e
chore: update workflow templates to v0.7.60 (#11403) 2025-12-18 17:09:29 -05:00
7 changed files with 58 additions and 27 deletions

View File

@ -227,6 +227,7 @@ class Encoder3d(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
input_channels=3,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
@ -245,7 +246,7 @@ class Encoder3d(nn.Module):
scale = 1.0
# init block
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
self.conv1 = CausalConv3d(input_channels, dims[0], 3, padding=1)
# downsample blocks
downsamples = []
@ -331,6 +332,7 @@ class Decoder3d(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
output_channels=3,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
@ -378,7 +380,7 @@ class Decoder3d(nn.Module):
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False), nn.SiLU(),
CausalConv3d(out_dim, 3, 3, padding=1))
CausalConv3d(out_dim, output_channels, 3, padding=1))
def forward(self, x, feat_cache=None, feat_idx=[0]):
## conv1
@ -449,6 +451,7 @@ class WanVAE(nn.Module):
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
image_channels=3,
dropout=0.0):
super().__init__()
self.dim = dim
@ -460,11 +463,11 @@ class WanVAE(nn.Module):
self.temperal_upsample = temperal_downsample[::-1]
# modules
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
self.encoder = Encoder3d(dim, z_dim * 2, image_channels, dim_mult, num_res_blocks,
attn_scales, self.temperal_downsample, dropout)
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
self.decoder = Decoder3d(dim, z_dim, image_channels, dim_mult, num_res_blocks,
attn_scales, self.temperal_upsample, dropout)
def encode(self, x):

View File

@ -321,6 +321,7 @@ class VAE:
self.latent_channels = 4
self.latent_dim = 2
self.output_channels = 3
self.pad_channel_value = None
self.process_input = lambda image: image * 2.0 - 1.0
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32]
@ -435,6 +436,7 @@ class VAE:
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
self.latent_channels = 64
self.output_channels = 2
self.pad_channel_value = "replicate"
self.upscale_ratio = 2048
self.downscale_ratio = 2048
self.latent_dim = 1
@ -546,7 +548,9 @@ class VAE:
self.downscale_index_formula = (4, 8, 8)
self.latent_dim = 3
self.latent_channels = 16
ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
self.output_channels = sd["encoder.conv1.weight"].shape[1]
self.pad_channel_value = 1.0
ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "image_channels": self.output_channels, "dropout": 0.0}
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: (1500 if shape[2]<=4 else 6000) * shape[3] * shape[4] * model_management.dtype_size(dtype)
@ -582,6 +586,7 @@ class VAE:
self.memory_used_decode = lambda shape, dtype: (shape[2] * shape[3] * 87000) * model_management.dtype_size(dtype)
self.latent_channels = 8
self.output_channels = 2
self.pad_channel_value = "replicate"
self.upscale_ratio = 4096
self.downscale_ratio = 4096
self.latent_dim = 2
@ -690,17 +695,28 @@ class VAE:
raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.")
def vae_encode_crop_pixels(self, pixels):
if not self.crop_input:
return pixels
if self.crop_input:
downscale_ratio = self.spacial_compression_encode()
downscale_ratio = self.spacial_compression_encode()
dims = pixels.shape[1:-1]
for d in range(len(dims)):
x = (dims[d] // downscale_ratio) * downscale_ratio
x_offset = (dims[d] % downscale_ratio) // 2
if x != dims[d]:
pixels = pixels.narrow(d + 1, x_offset, x)
dims = pixels.shape[1:-1]
for d in range(len(dims)):
x = (dims[d] // downscale_ratio) * downscale_ratio
x_offset = (dims[d] % downscale_ratio) // 2
if x != dims[d]:
pixels = pixels.narrow(d + 1, x_offset, x)
if pixels.shape[-1] > self.output_channels:
pixels = pixels[..., :self.output_channels]
elif pixels.shape[-1] < self.output_channels:
if self.pad_channel_value is not None:
if isinstance(self.pad_channel_value, str):
mode = self.pad_channel_value
value = None
else:
mode = "constant"
value = self.pad_channel_value
pixels = torch.nn.functional.pad(pixels, (0, self.output_channels - pixels.shape[-1]), mode=mode, value=value)
return pixels
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):

View File

@ -1131,7 +1131,11 @@ if len(DYNAMIC_INPUT_LOOKUP) == 0:
class V3Data(TypedDict):
hidden_inputs: dict[str, Any]
'Dictionary where the keys are the hidden input ids and the values are the values of the hidden inputs.'
dynamic_paths: dict[str, Any]
'Dictionary where the keys are the input ids and the values dictate how to turn the inputs into a nested dictionary.'
create_dynamic_tuple: bool
'When True, the value of the dynamic input will be in the format (value, path_key).'
class HiddenHolder:
def __init__(self, unique_id: str, prompt: Any,
@ -1468,6 +1472,8 @@ def build_nested_inputs(values: dict[str, Any], v3_data: V3Data):
values = values.copy()
result = {}
create_tuple = v3_data.get("create_dynamic_tuple", False)
for key, path in paths.items():
parts = path.split(".")
current = result
@ -1476,7 +1482,10 @@ def build_nested_inputs(values: dict[str, Any], v3_data: V3Data):
is_last = (i == len(parts) - 1)
if is_last:
current[p] = values.pop(key, None)
value = values.pop(key, None)
if create_tuple:
value = (value, key)
current[p] = value
else:
current = current.setdefault(p, {})

View File

@ -254,14 +254,14 @@ class LogicExtension(ComfyExtension):
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
SwitchNode,
SoftSwitchNode,
CustomComboNode,
DCTestNode,
AutogrowNamesTestNode,
AutogrowPrefixTestNode,
ComboOutputTestNode,
MatchTypeTestNode,
AnyTypeTestNode,
# SoftSwitchNode,
# CustomComboNode,
# DCTestNode,
# AutogrowNamesTestNode,
# AutogrowPrefixTestNode,
# ComboOutputTestNode,
# MatchTypeTestNode,
# AnyTypeTestNode,
]
async def comfy_entrypoint() -> LogicExtension:

View File

@ -480,7 +480,10 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
else:
lazy_status_present = getattr(obj, "check_lazy_status", None) is not None
if lazy_status_present:
required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data)
# for check_lazy_status, the returned data should include the original key of the input
v3_data_lazy = v3_data.copy()
v3_data_lazy["create_dynamic_tuple"] = True
required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data_lazy)
required_inputs = await resolve_map_node_over_list_results(required_inputs)
required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], []))
required_inputs = [x for x in required_inputs if isinstance(x,str) and (

View File

@ -343,7 +343,7 @@ class VAEEncode:
CATEGORY = "latent"
def encode(self, vae, pixels):
t = vae.encode(pixels[:,:,:,:3])
t = vae.encode(pixels)
return ({"samples":t}, )
class VAEEncodeTiled:
@ -361,7 +361,7 @@ class VAEEncodeTiled:
CATEGORY = "_for_testing"
def encode(self, vae, pixels, tile_size, overlap, temporal_size=64, temporal_overlap=8):
t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, overlap=overlap, tile_t=temporal_size, overlap_t=temporal_overlap)
t = vae.encode_tiled(pixels, tile_x=tile_size, tile_y=tile_size, overlap=overlap, tile_t=temporal_size, overlap_t=temporal_overlap)
return ({"samples": t}, )
class VAEEncodeForInpaint:

View File

@ -1,5 +1,5 @@
comfyui-frontend-package==1.34.9
comfyui-workflow-templates==0.7.59
comfyui-workflow-templates==0.7.60
comfyui-embedded-docs==0.3.1
torch
torchsde