Compare commits

...

9 Commits

Author SHA1 Message Date
Kohaku-Blueleaf
4b7b933432
Merge a6ae08b7ee into 6592bffc60 2025-12-14 13:06:52 +08:00
chaObserv
6592bffc60
seeds_2: add phi_2 variant and sampler node (#11309)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
* Add phi_2 solver type to seeds_2

* Add sampler node of seeds_2
2025-12-14 00:03:29 -05:00
Kohaku-Blueleaf
a6ae08b7ee modify existing node for needed feature instead of new node 2025-12-13 11:22:25 +08:00
Kohaku-Blueleaf
d330bb2a37 fix wrong ui pbar update 2025-12-09 23:06:53 +08:00
Kohaku-Blueleaf
305602c668 ensure the model train properly in both grad ckpt or not 2025-12-09 22:52:32 +08:00
Kohaku-Blueleaf
37139daa98 Merge branch 'master' into resolution-bucket 2025-12-05 17:26:15 +08:00
Kohaku-Blueleaf
4004af3290 Custom guider for correct offloading behavior 2025-12-05 17:24:55 +08:00
Kohaku-Blueleaf
bf573e94a2 Refactoring with better layout for maintainability 2025-12-01 23:53:20 +08:00
Kohaku-Blueleaf
7a93c55a9f Add resolution bucketing 2025-12-01 23:31:26 +08:00
6 changed files with 800 additions and 235 deletions

View File

@ -1557,10 +1557,13 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5, solver_type="phi_1"):
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
if solver_type not in {"phi_1", "phi_2"}:
raise ValueError("solver_type must be 'phi_1' or 'phi_2'")
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
@ -1600,8 +1603,14 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
if solver_type == "phi_1":
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
elif solver_type == "phi_2":
b2 = ei_h_phi_2(-h_eta) / r
b1 = ei_h_phi_1(-h_eta) - b2
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b2 * denoised_2)
if inject_noise:
segment_factor = (r - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()

View File

@ -122,20 +122,21 @@ def estimate_memory(model, noise_shape, conds):
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
return memory_required, minimum_memory_required
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, skip_load_model=False):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
_prepare_sampling,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
)
return executor.execute(model, noise_shape, conds, model_options=model_options)
return executor.execute(model, noise_shape, conds, model_options=model_options, skip_load_model=skip_load_model)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, skip_load_model=False):
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory)
models_list = [model] if not skip_load_model else []
comfy.model_management.load_models_gpu(models_list + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory)
real_model = model.model
return real_model, conds, models

View File

@ -659,6 +659,31 @@ class SamplerSASolver(io.ComfyNode):
get_sampler = execute
class SamplerSEEDS2(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerSEEDS2",
category="sampling/custom_sampling/samplers",
inputs=[
io.Combo.Input("solver_type", options=["phi_1", "phi_2"]),
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="Stochastic strength"),
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="SDE noise multiplier"),
io.Float.Input("r", default=0.5, min=0.01, max=1.0, step=0.01, round=False, tooltip="Relative step size for the intermediate stage (c2 node)"),
],
outputs=[io.Sampler.Output()]
)
@classmethod
def execute(cls, solver_type, eta, s_noise, r) -> io.NodeOutput:
sampler_name = "seeds_2"
sampler = comfy.samplers.ksampler(
sampler_name,
{"eta": eta, "s_noise": s_noise, "r": r, "solver_type": solver_type},
)
return io.NodeOutput(sampler)
class Noise_EmptyNoise:
def __init__(self):
self.seed = 0
@ -996,6 +1021,7 @@ class CustomSamplersExtension(ComfyExtension):
SamplerDPMAdaptative,
SamplerER_SDE,
SamplerSASolver,
SamplerSEEDS2,
SplitSigmas,
SplitSigmasDenoise,
FlipSigmas,

View File

@ -727,6 +727,29 @@ class RandomCropImagesNode(ImageProcessingNode):
return pil_to_tensor(img)
class FlipImagesNode(ImageProcessingNode):
node_id = "FlipImages"
display_name = "Flip Images"
description = "Flip all images horizontally or vertically."
extra_inputs = [
io.Combo.Input(
"direction",
options=["horizontal", "vertical"],
default="horizontal",
tooltip="Flip direction.",
),
]
@classmethod
def _process(cls, image, direction):
img = tensor_to_pil(image)
if direction == "horizontal":
img = img.transpose(Image.FLIP_LEFT_RIGHT)
else:
img = img.transpose(Image.FLIP_TOP_BOTTOM)
return pil_to_tensor(img)
class NormalizeImagesNode(ImageProcessingNode):
node_id = "NormalizeImages"
display_name = "Normalize Images"
@ -1125,6 +1148,99 @@ class MergeTextListsNode(TextProcessingNode):
# ========== Training Dataset Nodes ==========
class ResolutionBucket(io.ComfyNode):
"""Bucket latents and conditions by resolution for efficient batch training."""
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ResolutionBucket",
display_name="Resolution Bucket",
category="dataset",
is_experimental=True,
is_input_list=True,
inputs=[
io.Latent.Input(
"latents",
tooltip="List of latent dicts to bucket by resolution.",
),
io.Conditioning.Input(
"conditioning",
tooltip="List of conditioning lists (must match latents length).",
),
],
outputs=[
io.Latent.Output(
display_name="latents",
is_output_list=True,
tooltip="List of batched latent dicts, one per resolution bucket.",
),
io.Conditioning.Output(
display_name="conditioning",
is_output_list=True,
tooltip="List of condition lists, one per resolution bucket.",
),
],
)
@classmethod
def execute(cls, latents, conditioning):
# latents: list[{"samples": tensor}] where tensor is (B, C, H, W), typically B=1
# conditioning: list[list[cond]]
# Validate lengths match
if len(latents) != len(conditioning):
raise ValueError(
f"Number of latents ({len(latents)}) does not match number of conditions ({len(conditioning)})."
)
# Flatten latents and conditions to individual samples
flat_latents = [] # list of (C, H, W) tensors
flat_conditions = [] # list of condition lists
for latent_dict, cond in zip(latents, conditioning):
samples = latent_dict["samples"] # (B, C, H, W)
batch_size = samples.shape[0]
# cond is a list of conditions with length == batch_size
for i in range(batch_size):
flat_latents.append(samples[i]) # (C, H, W)
flat_conditions.append(cond[i]) # single condition
# Group by resolution (H, W)
buckets = {} # (H, W) -> {"latents": list, "conditions": list}
for latent, cond in zip(flat_latents, flat_conditions):
# latent shape is (..., H, W) (B, C, H, W) or (B, T, C, H ,W)
h, w = latent.shape[-2], latent.shape[-1]
key = (h, w)
if key not in buckets:
buckets[key] = {"latents": [], "conditions": []}
buckets[key]["latents"].append(latent)
buckets[key]["conditions"].append(cond)
# Convert buckets to output format
output_latents = [] # list[{"samples": tensor}] where tensor is (Bi, ..., H, W)
output_conditions = [] # list[list[cond]] where each inner list has Bi conditions
for (h, w), bucket_data in buckets.items():
# Stack latents into batch: list of (..., H, W) -> (Bi, ..., H, W)
stacked_latents = torch.stack(bucket_data["latents"], dim=0)
output_latents.append({"samples": stacked_latents})
# Conditions stay as list of condition lists
output_conditions.append(bucket_data["conditions"])
logging.info(
f"Resolution bucket ({h}x{w}): {len(bucket_data['latents'])} samples"
)
logging.info(f"Created {len(buckets)} resolution buckets from {len(flat_latents)} samples")
return io.NodeOutput(output_latents, output_conditions)
class MakeTrainingDataset(io.ComfyNode):
"""Encode images with VAE and texts with CLIP to create a training dataset."""
@ -1373,7 +1489,7 @@ class LoadTrainingDataset(io.ComfyNode):
shard_path = os.path.join(dataset_dir, shard_file)
with open(shard_path, "rb") as f:
shard_data = torch.load(f, weights_only=True)
shard_data = torch.load(f)
all_latents.extend(shard_data["latents"])
all_conditioning.extend(shard_data["conditioning"])
@ -1403,6 +1519,7 @@ class DatasetExtension(ComfyExtension):
ResizeImagesByLongerEdgeNode,
CenterCropImagesNode,
RandomCropImagesNode,
FlipImagesNode,
NormalizeImagesNode,
AdjustBrightnessNode,
AdjustContrastNode,
@ -1425,6 +1542,7 @@ class DatasetExtension(ComfyExtension):
MakeTrainingDataset,
SaveTrainingDataset,
LoadTrainingDataset,
ResolutionBucket,
]

View File

@ -221,6 +221,7 @@ class ImageScaleToTotalPixels(io.ComfyNode):
io.Image.Input("image"),
io.Combo.Input("upscale_method", options=cls.upscale_methods),
io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01),
io.Int.Input("resolution_steps", default=1, min=1, max=256),
],
outputs=[
io.Image.Output(),
@ -228,15 +229,15 @@ class ImageScaleToTotalPixels(io.ComfyNode):
)
@classmethod
def execute(cls, image, upscale_method, megapixels) -> io.NodeOutput:
def execute(cls, image, upscale_method, megapixels, resolution_steps) -> io.NodeOutput:
samples = image.movedim(-1,1)
total = int(megapixels * 1024 * 1024)
total = megapixels * 1024 * 1024
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
width = round(samples.shape[3] * scale_by / resolution_steps) * resolution_steps
height = round(samples.shape[2] * scale_by / resolution_steps) * resolution_steps
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
s = comfy.utils.common_upscale(samples, int(width), int(height), upscale_method, "disabled")
s = s.movedim(1,-1)
return io.NodeOutput(s)

View File

@ -10,6 +10,7 @@ from PIL import Image, ImageDraw, ImageFont
from typing_extensions import override
import comfy.samplers
import comfy.sampler_helpers
import comfy.sd
import comfy.utils
import comfy.model_management
@ -21,6 +22,68 @@ from comfy_api.latest import ComfyExtension, io, ui
from comfy.utils import ProgressBar
class TrainGuider(comfy_extras.nodes_custom_sampler.Guider_Basic):
"""
CFGGuider with modifications for training specific logic
"""
def outer_sample(
self,
noise,
latent_image,
sampler,
sigmas,
denoise_mask=None,
callback=None,
disable_pbar=False,
seed=None,
latent_shapes=None,
):
self.inner_model, self.conds, self.loaded_models = (
comfy.sampler_helpers.prepare_sampling(
self.model_patcher,
noise.shape,
self.conds,
self.model_options,
skip_load_model=True, # skip load model as we manage it in TrainLoraNode.execute()
)
)
device = self.model_patcher.load_device
if denoise_mask is not None:
denoise_mask = comfy.sampler_helpers.prepare_mask(
denoise_mask, noise.shape, device
)
noise = noise.to(device)
latent_image = latent_image.to(device)
sigmas = sigmas.to(device)
comfy.samplers.cast_to_load_options(
self.model_options, device=device, dtype=self.model_patcher.model_dtype()
)
try:
self.model_patcher.pre_run()
output = self.inner_sample(
noise,
latent_image,
device,
sampler,
sigmas,
denoise_mask,
callback,
disable_pbar,
seed,
latent_shapes=latent_shapes,
)
finally:
self.model_patcher.cleanup()
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
del self.inner_model
del self.loaded_models
return output
def make_batch_extra_option_dict(d, indicies, full_size=None):
new_dict = {}
for k, v in d.items():
@ -65,6 +128,7 @@ class TrainSampler(comfy.samplers.Sampler):
seed=0,
training_dtype=torch.bfloat16,
real_dataset=None,
bucket_latents=None,
):
self.loss_fn = loss_fn
self.optimizer = optimizer
@ -75,6 +139,28 @@ class TrainSampler(comfy.samplers.Sampler):
self.seed = seed
self.training_dtype = training_dtype
self.real_dataset: list[torch.Tensor] | None = real_dataset
# Bucket mode data
self.bucket_latents: list[torch.Tensor] | None = (
bucket_latents # list of (Bi, C, Hi, Wi)
)
# Precompute bucket offsets and weights for sampling
if bucket_latents is not None:
self._init_bucket_data(bucket_latents)
else:
self.bucket_offsets = None
self.bucket_weights = None
self.num_images = None
def _init_bucket_data(self, bucket_latents):
"""Initialize bucket offsets and weights for sampling."""
self.bucket_offsets = [0]
bucket_sizes = []
for lat in bucket_latents:
bucket_sizes.append(lat.shape[0])
self.bucket_offsets.append(self.bucket_offsets[-1] + lat.shape[0])
self.num_images = self.bucket_offsets[-1]
# Weights for sampling buckets proportional to their size
self.bucket_weights = torch.tensor(bucket_sizes, dtype=torch.float32)
def fwd_bwd(
self,
@ -115,6 +201,108 @@ class TrainSampler(comfy.samplers.Sampler):
bwd_loss.backward()
return loss
def _generate_batch_sigmas(self, model_wrap, batch_size, device):
"""Generate random sigma values for a batch."""
batch_sigmas = [
model_wrap.inner_model.model_sampling.percent_to_sigma(
torch.rand((1,)).item()
)
for _ in range(batch_size)
]
return torch.tensor(batch_sigmas).to(device)
def _train_step_bucket_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, pbar):
"""Execute one training step in bucket mode."""
# Sample bucket (weighted by size), then sample batch from bucket
bucket_idx = torch.multinomial(self.bucket_weights, 1).item()
bucket_latent = self.bucket_latents[bucket_idx] # (Bi, C, Hi, Wi)
bucket_size = bucket_latent.shape[0]
bucket_offset = self.bucket_offsets[bucket_idx]
# Sample indices from this bucket (use all if bucket_size < batch_size)
actual_batch_size = min(self.batch_size, bucket_size)
relative_indices = torch.randperm(bucket_size)[:actual_batch_size].tolist()
# Convert to absolute indices for fwd_bwd (cond is flattened, use absolute index)
absolute_indices = [bucket_offset + idx for idx in relative_indices]
batch_latent = bucket_latent[relative_indices].to(latent_image) # (actual_batch_size, C, H, W)
batch_noise = noisegen.generate_noise({"samples": batch_latent}).to(
batch_latent.device
)
batch_sigmas = self._generate_batch_sigmas(model_wrap, actual_batch_size, batch_latent.device)
loss = self.fwd_bwd(
model_wrap,
batch_sigmas,
batch_noise,
batch_latent,
cond, # Use flattened cond with absolute indices
absolute_indices,
extra_args,
self.num_images,
bwd=True,
)
if self.loss_callback:
self.loss_callback(loss.item())
pbar.set_postfix({"loss": f"{loss.item():.4f}", "bucket": bucket_idx})
def _train_step_standard_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar):
"""Execute one training step in standard (non-bucket, non-multi-res) mode."""
indicies = torch.randperm(dataset_size)[: self.batch_size].tolist()
batch_latent = torch.stack([latent_image[i] for i in indicies])
batch_noise = noisegen.generate_noise({"samples": batch_latent}).to(
batch_latent.device
)
batch_sigmas = self._generate_batch_sigmas(model_wrap, min(self.batch_size, dataset_size), batch_latent.device)
loss = self.fwd_bwd(
model_wrap,
batch_sigmas,
batch_noise,
batch_latent,
cond,
indicies,
extra_args,
dataset_size,
bwd=True,
)
if self.loss_callback:
self.loss_callback(loss.item())
pbar.set_postfix({"loss": f"{loss.item():.4f}"})
def _train_step_multires_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar):
"""Execute one training step in multi-resolution mode (real_dataset is set)."""
indicies = torch.randperm(dataset_size)[: self.batch_size].tolist()
total_loss = 0
for index in indicies:
single_latent = self.real_dataset[index].to(latent_image)
batch_noise = noisegen.generate_noise(
{"samples": single_latent}
).to(single_latent.device)
batch_sigmas = (
model_wrap.inner_model.model_sampling.percent_to_sigma(
torch.rand((1,)).item()
)
)
batch_sigmas = torch.tensor([batch_sigmas]).to(single_latent.device)
loss = self.fwd_bwd(
model_wrap,
batch_sigmas,
batch_noise,
single_latent,
cond,
[index],
extra_args,
dataset_size,
bwd=False,
)
total_loss += loss
total_loss = total_loss / self.grad_acc / len(indicies)
total_loss.backward()
if self.loss_callback:
self.loss_callback(total_loss.item())
pbar.set_postfix({"loss": f"{total_loss.item():.4f}"})
def sample(
self,
model_wrap,
@ -142,70 +330,18 @@ class TrainSampler(comfy.samplers.Sampler):
noisegen = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(
self.seed + i * 1000
)
indicies = torch.randperm(dataset_size)[: self.batch_size].tolist()
if self.real_dataset is None:
batch_latent = torch.stack([latent_image[i] for i in indicies])
batch_noise = noisegen.generate_noise({"samples": batch_latent}).to(
batch_latent.device
)
batch_sigmas = [
model_wrap.inner_model.model_sampling.percent_to_sigma(
torch.rand((1,)).item()
)
for _ in range(min(self.batch_size, dataset_size))
]
batch_sigmas = torch.tensor(batch_sigmas).to(batch_latent.device)
loss = self.fwd_bwd(
model_wrap,
batch_sigmas,
batch_noise,
batch_latent,
cond,
indicies,
extra_args,
dataset_size,
bwd=True,
)
if self.loss_callback:
self.loss_callback(loss.item())
pbar.set_postfix({"loss": f"{loss.item():.4f}"})
if self.bucket_latents is not None:
self._train_step_bucket_mode(model_wrap, cond, extra_args, noisegen, latent_image, pbar)
elif self.real_dataset is None:
self._train_step_standard_mode(model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar)
else:
total_loss = 0
for index in indicies:
single_latent = self.real_dataset[index].to(latent_image)
batch_noise = noisegen.generate_noise(
{"samples": single_latent}
).to(single_latent.device)
batch_sigmas = (
model_wrap.inner_model.model_sampling.percent_to_sigma(
torch.rand((1,)).item()
)
)
batch_sigmas = torch.tensor([batch_sigmas]).to(single_latent.device)
loss = self.fwd_bwd(
model_wrap,
batch_sigmas,
batch_noise,
single_latent,
cond,
[index],
extra_args,
dataset_size,
bwd=False,
)
total_loss += loss
total_loss = total_loss / self.grad_acc / len(indicies)
total_loss.backward()
if self.loss_callback:
self.loss_callback(total_loss.item())
pbar.set_postfix({"loss": f"{total_loss.item():.4f}"})
self._train_step_multires_mode(model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar)
if (i + 1) % self.grad_acc == 0:
self.optimizer.step()
self.optimizer.zero_grad()
ui_pbar.update(1)
ui_pbar.update(1)
torch.cuda.empty_cache()
return torch.zeros_like(latent_image)
@ -283,6 +419,364 @@ def unpatch(m):
del m.org_forward
def _process_latents_bucket_mode(latents):
"""Process latents for bucket mode training.
Args:
latents: list[{"samples": tensor}] where each tensor is (Bi, C, Hi, Wi)
Returns:
list of latent tensors
"""
bucket_latents = []
for latent_dict in latents:
bucket_latents.append(latent_dict["samples"]) # (Bi, C, Hi, Wi)
return bucket_latents
def _process_latents_standard_mode(latents):
"""Process latents for standard (non-bucket) mode training.
Args:
latents: list of latent dicts or single latent dict
Returns:
Processed latents (tensor or list of tensors)
"""
if len(latents) == 1:
return latents[0]["samples"] # Single latent dict
latent_list = []
for latent in latents:
latent = latent["samples"]
bs = latent.shape[0]
if bs != 1:
for sub_latent in latent:
latent_list.append(sub_latent[None])
else:
latent_list.append(latent)
return latent_list
def _process_conditioning(positive):
"""Process conditioning - either single list or list of lists.
Args:
positive: list of conditioning
Returns:
Flattened conditioning list
"""
if len(positive) == 1:
return positive[0] # Single conditioning list
# Multiple conditioning lists - flatten
flat_positive = []
for cond in positive:
if isinstance(cond, list):
flat_positive.extend(cond)
else:
flat_positive.append(cond)
return flat_positive
def _prepare_latents_and_count(latents, dtype, bucket_mode):
"""Convert latents to dtype and compute image counts.
Args:
latents: Latents (tensor, list of tensors, or bucket list)
dtype: Target dtype
bucket_mode: Whether bucket mode is enabled
Returns:
tuple: (processed_latents, num_images, multi_res)
"""
if bucket_mode:
# In bucket mode, latents is list of tensors (Bi, C, Hi, Wi)
latents = [t.to(dtype) for t in latents]
num_buckets = len(latents)
num_images = sum(t.shape[0] for t in latents)
multi_res = False # Not using multi_res path in bucket mode
logging.info(f"Bucket mode: {num_buckets} buckets, {num_images} total samples")
for i, lat in enumerate(latents):
logging.info(f" Bucket {i}: shape {lat.shape}")
return latents, num_images, multi_res
# Non-bucket mode
if isinstance(latents, list):
all_shapes = set()
latents = [t.to(dtype) for t in latents]
for latent in latents:
all_shapes.add(latent.shape)
logging.info(f"Latent shapes: {all_shapes}")
if len(all_shapes) > 1:
multi_res = True
else:
multi_res = False
latents = torch.cat(latents, dim=0)
num_images = len(latents)
elif isinstance(latents, torch.Tensor):
latents = latents.to(dtype)
num_images = latents.shape[0]
multi_res = False
else:
logging.error(f"Invalid latents type: {type(latents)}")
num_images = 0
multi_res = False
return latents, num_images, multi_res
def _validate_and_expand_conditioning(positive, num_images, bucket_mode):
"""Validate conditioning count matches image count, expand if needed.
Args:
positive: Conditioning list
num_images: Number of images
bucket_mode: Whether bucket mode is enabled
Returns:
Validated/expanded conditioning list
Raises:
ValueError: If conditioning count doesn't match image count
"""
if bucket_mode:
return positive # Skip validation in bucket mode
logging.info(f"Total Images: {num_images}, Total Captions: {len(positive)}")
if len(positive) == 1 and num_images > 1:
return positive * num_images
elif len(positive) != num_images:
raise ValueError(
f"Number of positive conditions ({len(positive)}) does not match number of images ({num_images})."
)
return positive
def _load_existing_lora(existing_lora):
"""Load existing LoRA weights if provided.
Args:
existing_lora: LoRA filename or "[None]"
Returns:
tuple: (existing_weights dict, existing_steps int)
"""
if existing_lora == "[None]":
return {}, 0
lora_path = folder_paths.get_full_path_or_raise("loras", existing_lora)
# Extract steps from filename like "trained_lora_10_steps_20250225_203716"
existing_steps = int(existing_lora.split("_steps_")[0].split("_")[-1])
existing_weights = {}
if lora_path:
existing_weights = comfy.utils.load_torch_file(lora_path)
return existing_weights, existing_steps
def _create_weight_adapter(
module, module_name, existing_weights, algorithm, lora_dtype, rank
):
"""Create a weight adapter for a module with weight.
Args:
module: The module to create adapter for
module_name: Name of the module
existing_weights: Dict of existing LoRA weights
algorithm: Algorithm name for new adapters
lora_dtype: dtype for LoRA weights
rank: Rank for new LoRA adapters
Returns:
tuple: (train_adapter, lora_params dict)
"""
key = f"{module_name}.weight"
shape = module.weight.shape
lora_params = {}
if len(shape) >= 2:
alpha = float(existing_weights.get(f"{key}.alpha", 1.0))
dora_scale = existing_weights.get(f"{key}.dora_scale", None)
# Try to load existing adapter
existing_adapter = None
for adapter_cls in adapters:
existing_adapter = adapter_cls.load(
module_name, existing_weights, alpha, dora_scale
)
if existing_adapter is not None:
break
if existing_adapter is None:
adapter_cls = adapter_maps[algorithm]
if existing_adapter is not None:
train_adapter = existing_adapter.to_train().to(lora_dtype)
else:
# Use LoRA with alpha=1.0 by default
train_adapter = adapter_cls.create_train(
module.weight, rank=rank, alpha=1.0
).to(lora_dtype)
for name, parameter in train_adapter.named_parameters():
lora_params[f"{module_name}.{name}"] = parameter
return train_adapter.train().requires_grad_(True), lora_params
else:
# 1D weight - use BiasDiff
diff = torch.nn.Parameter(
torch.zeros(module.weight.shape, dtype=lora_dtype, requires_grad=True)
)
diff_module = BiasDiff(diff).train().requires_grad_(True)
lora_params[f"{module_name}.diff"] = diff
return diff_module, lora_params
def _create_bias_adapter(module, module_name, lora_dtype):
"""Create a bias adapter for a module with bias.
Args:
module: The module with bias
module_name: Name of the module
lora_dtype: dtype for LoRA weights
Returns:
tuple: (bias_module, lora_params dict)
"""
bias = torch.nn.Parameter(
torch.zeros(module.bias.shape, dtype=lora_dtype, requires_grad=True)
)
bias_module = BiasDiff(bias).train().requires_grad_(True)
lora_params = {f"{module_name}.diff_b": bias}
return bias_module, lora_params
def _setup_lora_adapters(mp, existing_weights, algorithm, lora_dtype, rank):
"""Setup all LoRA adapters on the model.
Args:
mp: Model patcher
existing_weights: Dict of existing LoRA weights
algorithm: Algorithm name for new adapters
lora_dtype: dtype for LoRA weights
rank: Rank for new LoRA adapters
Returns:
tuple: (lora_sd dict, all_weight_adapters list)
"""
lora_sd = {}
all_weight_adapters = []
for n, m in mp.model.named_modules():
if hasattr(m, "weight_function"):
if m.weight is not None:
adapter, params = _create_weight_adapter(
m, n, existing_weights, algorithm, lora_dtype, rank
)
lora_sd.update(params)
key = f"{n}.weight"
mp.add_weight_wrapper(key, adapter)
all_weight_adapters.append(adapter)
if hasattr(m, "bias") and m.bias is not None:
bias_adapter, bias_params = _create_bias_adapter(m, n, lora_dtype)
lora_sd.update(bias_params)
key = f"{n}.bias"
mp.add_weight_wrapper(key, bias_adapter)
all_weight_adapters.append(bias_adapter)
return lora_sd, all_weight_adapters
def _create_optimizer(optimizer_name, parameters, learning_rate):
"""Create optimizer based on name.
Args:
optimizer_name: Name of optimizer ("Adam", "AdamW", "SGD", "RMSprop")
parameters: Parameters to optimize
learning_rate: Learning rate
Returns:
Optimizer instance
"""
if optimizer_name == "Adam":
return torch.optim.Adam(parameters, lr=learning_rate)
elif optimizer_name == "AdamW":
return torch.optim.AdamW(parameters, lr=learning_rate)
elif optimizer_name == "SGD":
return torch.optim.SGD(parameters, lr=learning_rate)
elif optimizer_name == "RMSprop":
return torch.optim.RMSprop(parameters, lr=learning_rate)
def _create_loss_function(loss_function_name):
"""Create loss function based on name.
Args:
loss_function_name: Name of loss function ("MSE", "L1", "Huber", "SmoothL1")
Returns:
Loss function instance
"""
if loss_function_name == "MSE":
return torch.nn.MSELoss()
elif loss_function_name == "L1":
return torch.nn.L1Loss()
elif loss_function_name == "Huber":
return torch.nn.HuberLoss()
elif loss_function_name == "SmoothL1":
return torch.nn.SmoothL1Loss()
def _run_training_loop(
guider, train_sampler, latents, num_images, seed, bucket_mode, multi_res
):
"""Execute the training loop.
Args:
guider: The guider object
train_sampler: The training sampler
latents: Latent tensors
num_images: Number of images
seed: Random seed
bucket_mode: Whether bucket mode is enabled
multi_res: Whether multi-resolution mode is enabled
"""
sigmas = torch.tensor(range(num_images))
noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(seed)
if bucket_mode:
# Use first bucket's first latent as dummy for guider
dummy_latent = latents[0][:1].repeat(num_images, 1, 1, 1)
guider.sample(
noise.generate_noise({"samples": dummy_latent}),
dummy_latent,
train_sampler,
sigmas,
seed=noise.seed,
)
elif multi_res:
# use first latent as dummy latent if multi_res
latents = latents[0].repeat(num_images, 1, 1, 1)
guider.sample(
noise.generate_noise({"samples": latents}),
latents,
train_sampler,
sigmas,
seed=noise.seed,
)
else:
guider.sample(
noise.generate_noise({"samples": latents}),
latents,
train_sampler,
sigmas,
seed=noise.seed,
)
class TrainLoraNode(io.ComfyNode):
@classmethod
def define_schema(cls):
@ -385,6 +879,11 @@ class TrainLoraNode(io.ComfyNode):
default="[None]",
tooltip="The existing LoRA to append to. Set to None for new LoRA.",
),
io.Boolean.Input(
"bucket_mode",
default=False,
tooltip="Enable resolution bucket mode. When enabled, expects pre-bucketed latents from ResolutionBucket node.",
),
],
outputs=[
io.Model.Output(
@ -419,6 +918,7 @@ class TrainLoraNode(io.ComfyNode):
algorithm,
gradient_checkpointing,
existing_lora,
bucket_mode,
):
# Extract scalars from lists (due to is_input_list=True)
model = model[0]
@ -427,215 +927,125 @@ class TrainLoraNode(io.ComfyNode):
grad_accumulation_steps = grad_accumulation_steps[0]
learning_rate = learning_rate[0]
rank = rank[0]
optimizer = optimizer[0]
loss_function = loss_function[0]
optimizer_name = optimizer[0]
loss_function_name = loss_function[0]
seed = seed[0]
training_dtype = training_dtype[0]
lora_dtype = lora_dtype[0]
algorithm = algorithm[0]
gradient_checkpointing = gradient_checkpointing[0]
existing_lora = existing_lora[0]
bucket_mode = bucket_mode[0]
# Handle latents - either single dict or list of dicts
if len(latents) == 1:
latents = latents[0]["samples"] # Single latent dict
# Process latents based on mode
if bucket_mode:
latents = _process_latents_bucket_mode(latents)
else:
latent_list = []
for latent in latents:
latent = latent["samples"]
bs = latent.shape[0]
if bs != 1:
for sub_latent in latent:
latent_list.append(sub_latent[None])
else:
latent_list.append(latent)
latents = latent_list
latents = _process_latents_standard_mode(latents)
# Handle conditioning - either single list or list of lists
if len(positive) == 1:
positive = positive[0] # Single conditioning list
else:
# Multiple conditioning lists - flatten
flat_positive = []
for cond in positive:
if isinstance(cond, list):
flat_positive.extend(cond)
else:
flat_positive.append(cond)
positive = flat_positive
# Process conditioning
positive = _process_conditioning(positive)
# Setup model and dtype
mp = model.clone()
dtype = node_helpers.string_to_torch_dtype(training_dtype)
lora_dtype = node_helpers.string_to_torch_dtype(lora_dtype)
mp.set_model_compute_dtype(dtype)
# latents here can be list of different size latent or one large batch
if isinstance(latents, list):
all_shapes = set()
latents = [t.to(dtype) for t in latents]
for latent in latents:
all_shapes.add(latent.shape)
logging.info(f"Latent shapes: {all_shapes}")
if len(all_shapes) > 1:
multi_res = True
else:
multi_res = False
latents = torch.cat(latents, dim=0)
num_images = len(latents)
elif isinstance(latents, torch.Tensor):
latents = latents.to(dtype)
num_images = latents.shape[0]
else:
logging.error(f"Invalid latents type: {type(latents)}")
# Prepare latents and compute counts
latents, num_images, multi_res = _prepare_latents_and_count(
latents, dtype, bucket_mode
)
logging.info(f"Total Images: {num_images}, Total Captions: {len(positive)}")
if len(positive) == 1 and num_images > 1:
positive = positive * num_images
elif len(positive) != num_images:
raise ValueError(
f"Number of positive conditions ({len(positive)}) does not match number of images ({num_images})."
)
# Validate and expand conditioning
positive = _validate_and_expand_conditioning(positive, num_images, bucket_mode)
with torch.inference_mode(False):
lora_sd = {}
generator = torch.Generator()
generator.manual_seed(seed)
# Setup models for training
mp.model.requires_grad_(False)
# Load existing LoRA weights if provided
existing_weights = {}
existing_steps = 0
if existing_lora != "[None]":
lora_path = folder_paths.get_full_path_or_raise("loras", existing_lora)
# Extract steps from filename like "trained_lora_10_steps_20250225_203716"
existing_steps = int(existing_lora.split("_steps_")[0].split("_")[-1])
if lora_path:
existing_weights = comfy.utils.load_torch_file(lora_path)
existing_weights, existing_steps = _load_existing_lora(existing_lora)
all_weight_adapters = []
for n, m in mp.model.named_modules():
if hasattr(m, "weight_function"):
if m.weight is not None:
key = "{}.weight".format(n)
shape = m.weight.shape
if len(shape) >= 2:
alpha = float(existing_weights.get(f"{key}.alpha", 1.0))
dora_scale = existing_weights.get(f"{key}.dora_scale", None)
for adapter_cls in adapters:
existing_adapter = adapter_cls.load(
n, existing_weights, alpha, dora_scale
)
if existing_adapter is not None:
break
else:
existing_adapter = None
adapter_cls = adapter_maps[algorithm]
# Setup LoRA adapters
lora_sd, all_weight_adapters = _setup_lora_adapters(
mp, existing_weights, algorithm, lora_dtype, rank
)
if existing_adapter is not None:
train_adapter = existing_adapter.to_train().to(
lora_dtype
)
else:
# Use LoRA with alpha=1.0 by default
train_adapter = adapter_cls.create_train(
m.weight, rank=rank, alpha=1.0
).to(lora_dtype)
for name, parameter in train_adapter.named_parameters():
lora_sd[f"{n}.{name}"] = parameter
# Create optimizer and loss function
optimizer = _create_optimizer(
optimizer_name, lora_sd.values(), learning_rate
)
criterion = _create_loss_function(loss_function_name)
mp.add_weight_wrapper(key, train_adapter)
all_weight_adapters.append(train_adapter)
else:
diff = torch.nn.Parameter(
torch.zeros(
m.weight.shape, dtype=lora_dtype, requires_grad=True
)
)
diff_module = BiasDiff(diff)
mp.add_weight_wrapper(key, BiasDiff(diff))
all_weight_adapters.append(diff_module)
lora_sd["{}.diff".format(n)] = diff
if hasattr(m, "bias") and m.bias is not None:
key = "{}.bias".format(n)
bias = torch.nn.Parameter(
torch.zeros(
m.bias.shape, dtype=lora_dtype, requires_grad=True
)
)
bias_module = BiasDiff(bias)
lora_sd["{}.diff_b".format(n)] = bias
mp.add_weight_wrapper(key, BiasDiff(bias))
all_weight_adapters.append(bias_module)
if optimizer == "Adam":
optimizer = torch.optim.Adam(lora_sd.values(), lr=learning_rate)
elif optimizer == "AdamW":
optimizer = torch.optim.AdamW(lora_sd.values(), lr=learning_rate)
elif optimizer == "SGD":
optimizer = torch.optim.SGD(lora_sd.values(), lr=learning_rate)
elif optimizer == "RMSprop":
optimizer = torch.optim.RMSprop(lora_sd.values(), lr=learning_rate)
# Setup loss function based on selection
if loss_function == "MSE":
criterion = torch.nn.MSELoss()
elif loss_function == "L1":
criterion = torch.nn.L1Loss()
elif loss_function == "Huber":
criterion = torch.nn.HuberLoss()
elif loss_function == "SmoothL1":
criterion = torch.nn.SmoothL1Loss()
# setup models
# Setup gradient checkpointing
if gradient_checkpointing:
for m in find_all_highest_child_module_with_forward(
mp.model.diffusion_model
):
patch(m)
mp.model.requires_grad_(False)
torch.cuda.empty_cache()
# With force_full_load=False we should be able to have offloading
# But for offloading in training we need custom AutoGrad hooks for fwd/bwd
comfy.model_management.load_models_gpu(
[mp], memory_required=1e20, force_full_load=True
)
torch.cuda.empty_cache()
# Setup sampler and guider like in test script
# Setup loss tracking
loss_map = {"loss": []}
def loss_callback(loss):
loss_map["loss"].append(loss)
train_sampler = TrainSampler(
criterion,
optimizer,
loss_callback=loss_callback,
batch_size=batch_size,
grad_acc=grad_accumulation_steps,
total_steps=steps * grad_accumulation_steps,
seed=seed,
training_dtype=dtype,
real_dataset=latents if multi_res else None,
)
guider = comfy_extras.nodes_custom_sampler.Guider_Basic(mp)
guider.set_conds(positive) # Set conditioning from input
# Create sampler
if bucket_mode:
train_sampler = TrainSampler(
criterion,
optimizer,
loss_callback=loss_callback,
batch_size=batch_size,
grad_acc=grad_accumulation_steps,
total_steps=steps * grad_accumulation_steps,
seed=seed,
training_dtype=dtype,
bucket_latents=latents,
)
else:
train_sampler = TrainSampler(
criterion,
optimizer,
loss_callback=loss_callback,
batch_size=batch_size,
grad_acc=grad_accumulation_steps,
total_steps=steps * grad_accumulation_steps,
seed=seed,
training_dtype=dtype,
real_dataset=latents if multi_res else None,
)
# Training loop
# Setup guider
guider = TrainGuider(mp)
guider.set_conds(positive)
# Run training loop
try:
# Generate dummy sigmas and noise
sigmas = torch.tensor(range(num_images))
noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(seed)
if multi_res:
# use first latent as dummy latent if multi_res
latents = latents[0].repeat((num_images,) + ((1,) * (latents[0].ndim - 1)))
guider.sample(
noise.generate_noise({"samples": latents}),
latents,
_run_training_loop(
guider,
train_sampler,
sigmas,
seed=noise.seed,
latents,
num_images,
seed,
bucket_mode,
multi_res,
)
finally:
for m in mp.model.modules():
unpatch(m)
del train_sampler, optimizer
# Finalize adapters
for adapter in all_weight_adapters:
adapter.requires_grad_(False)
@ -645,7 +1055,7 @@ class TrainLoraNode(io.ComfyNode):
return io.NodeOutput(mp, lora_sd, loss_map, steps + existing_steps)
class LoraModelLoader(io.ComfyNode):
class LoraModelLoader(io.ComfyNode):#
@classmethod
def define_schema(cls):
return io.Schema(