import torch, math import triton import triton.language as tl # Autotune Here configs = [ triton.Config({'BLOCK_M': BM, 'BLOCK_N': BN, 'STAGE':S, 'waves_per_eu':wpe}, num_warps=nw, num_stages=ns) \ for BM in [32]\ for BN in [16]\ for nw in[2, 4]\ for ns in [1]\ for S in [1]\ for wpe in [3,4] ] def keep(conf): BLOCK_M = conf.kwargs["BLOCK_M"] BLOCK_N = conf.kwargs["BLOCK_N"] BLOCK_AREA = BLOCK_M * BLOCK_N # do not keep too high block area, any higher doesnt seem to help for navi21 if (BLOCK_AREA > 1024): return False # do not keep 'mirror image' configs (ie keep [64,32] and discard [32,64]) if (BLOCK_M < BLOCK_N): return False # do not keep skinny sizes for now if (BLOCK_M//BLOCK_N >= 8): return False # do not keep configs where num_warps is too high or low if (BLOCK_AREA >= 1024 and conf.num_warps != 2): return False if (BLOCK_AREA >= 2048 and conf.num_warps != 4): return False return True @triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, q_scale, kv_len, K_ptrs, K_scale_ptr, V_ptrs, stride_kn, stride_vn, start_m, BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, ): lo, hi = 0, kv_len for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) k_mask = offs_n[None, :] < (kv_len - start_n) k = tl.load(K_ptrs, mask = k_mask) k_scale = tl.load(K_scale_ptr) qk = tl.dot(q, k).to(tl.float32) * q_scale * k_scale m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk = qk - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij acc = acc * alpha[:, None] v = tl.load(V_ptrs, mask = offs_n[:, None] < (kv_len - start_n)) p = p.to(tl.float16) acc += tl.dot(p, v, out_dtype=tl.float32) m_i = m_ij K_ptrs += BLOCK_N * stride_kn K_scale_ptr += 1 V_ptrs += BLOCK_N * stride_vn return acc, l_i @triton.autotune( list(filter(keep, configs)), key=['qo_len', 'kv_len', 'h_qo'] ) @triton.jit def _attn_fwd(Q, K, V, Q_scale, K_scale, Out, stride_qz, stride_qh, stride_qn, stride_kz, stride_kh, stride_kn, stride_vz, stride_vh, stride_vn, stride_oz, stride_oh, stride_on, qo_len, kv_len, H: tl.constexpr, num_kv_groups: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, STAGE: tl.constexpr ): start_m = tl.program_id(0) off_z = tl.program_id(2).to(tl.int64) off_h = tl.program_id(1).to(tl.int64) q_scale_offset = (off_z * H + off_h) * tl.cdiv(qo_len, BLOCK_M) k_scale_offset = (off_z * (H // num_kv_groups) + off_h // num_kv_groups) * tl.cdiv(kv_len, BLOCK_N) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_k = tl.arange(0, HEAD_DIM) Q_ptrs = Q + (off_z * stride_qz + off_h * stride_qh) + offs_m[:, None] * stride_qn + offs_k[None, :] Q_scale_ptr = Q_scale + q_scale_offset + start_m K_ptrs = K + (off_z * stride_kz + (off_h // num_kv_groups) * stride_kh) + offs_n[None, :] * stride_kn + offs_k[:, None] K_scale_ptr = K_scale + k_scale_offset V_ptrs = V + (off_z * stride_vz + (off_h // num_kv_groups) * stride_vh) + offs_n[:, None] * stride_vn + offs_k[None, :] O_block_ptr = Out + (off_z * stride_oz + off_h * stride_oh) + offs_m[:, None] * stride_on + offs_k[None, :] m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32) q = tl.load(Q_ptrs, mask = offs_m[:, None] < qo_len) q_scale = tl.load(Q_scale_ptr) acc, l_i = _attn_fwd_inner(acc, l_i, m_i, q, q_scale, kv_len, K_ptrs, K_scale_ptr, V_ptrs, stride_kn, stride_vn, start_m, BLOCK_M, HEAD_DIM, BLOCK_N, 4 - STAGE, offs_m, offs_n ) acc = acc / l_i[:, None] tl.store(O_block_ptr, acc.to(Out.type.element_ty), mask = (offs_m[:, None] < qo_len)) def forward(q, k, v, q_scale, k_scale, tensor_layout="HND", output_dtype=torch.float16): BLOCK_M = 128 BLOCK_N = 64 stage = 1 o = torch.empty(q.shape, dtype=output_dtype, device=q.device) if tensor_layout == "HND": b, h_qo, qo_len, head_dim = q.shape _, h_kv, kv_len, _ = k.shape stride_bz_q, stride_h_q, stride_seq_q = q.stride(0), q.stride(1), q.stride(2) stride_bz_k, stride_h_k, stride_seq_k = k.stride(0), k.stride(1), k.stride(2) stride_bz_v, stride_h_v, stride_seq_v = v.stride(0), v.stride(1), v.stride(2) stride_bz_o, stride_h_o, stride_seq_o = o.stride(0), o.stride(1), o.stride(2) elif tensor_layout == "NHD": b, qo_len, h_qo, head_dim = q.shape _, kv_len, h_kv, _ = k.shape stride_bz_q, stride_h_q, stride_seq_q = q.stride(0), q.stride(2), q.stride(1) stride_bz_k, stride_h_k, stride_seq_k = k.stride(0), k.stride(2), k.stride(1) stride_bz_v, stride_h_v, stride_seq_v = v.stride(0), v.stride(2), v.stride(1) stride_bz_o, stride_h_o, stride_seq_o = o.stride(0), o.stride(2), o.stride(1) else: raise ValueError(f"tensor_layout {tensor_layout} not supported") HEAD_DIM_K = head_dim num_kv_groups = h_qo // h_kv grid = lambda META: (triton.cdiv(qo_len, META['BLOCK_M']), h_qo, b) _attn_fwd[grid]( q, k, v, q_scale, k_scale, o, stride_bz_q, stride_h_q, stride_seq_q, stride_bz_k, stride_h_k, stride_seq_k, stride_bz_v, stride_h_v, stride_seq_v, stride_bz_o, stride_h_o, stride_seq_o, qo_len, kv_len, h_qo, num_kv_groups, HEAD_DIM=HEAD_DIM_K, ) return o