import os import model_management import torch import comfy.utils import numpy as np import cv2 import math from custom_nodes.facerestore.facelib.utils.face_restoration_helper import FaceRestoreHelper from custom_nodes.facerestore.facelib.detection.retinaface import retinaface from torchvision.transforms.functional import normalize def img2tensor(imgs, bgr2rgb=True, float32=True): """Numpy array to tensor. Args: imgs (list[ndarray] | ndarray): Input images. bgr2rgb (bool): Whether to change bgr to rgb. float32 (bool): Whether to change to float32. Returns: list[tensor] | tensor: Tensor images. If returned results only have one element, just return tensor. """ def _totensor(img, bgr2rgb, float32): if img.shape[2] == 3 and bgr2rgb: if img.dtype == 'float64': img = img.astype('float32') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img.transpose(2, 0, 1)) if float32: img = img.float() return img if isinstance(imgs, list): return [_totensor(img, bgr2rgb, float32) for img in imgs] else: return _totensor(imgs, bgr2rgb, float32) def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): """Convert torch Tensors into image numpy arrays. After clamping to [min, max], values will be normalized to [0, 1]. Args: tensor (Tensor or list[Tensor]): Accept shapes: 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); 2) 3D Tensor of shape (3/1 x H x W); 3) 2D Tensor of shape (H x W). Tensor channel should be in RGB order. rgb2bgr (bool): Whether to change rgb to bgr. out_type (numpy type): output types. If ``np.uint8``, transform outputs to uint8 type with range [0, 255]; otherwise, float type with range [0, 1]. Default: ``np.uint8``. min_max (tuple[int]): min and max values for clamp. Returns: (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of shape (H x W). The channel order is BGR. """ if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') if torch.is_tensor(tensor): tensor = [tensor] result = [] for _tensor in tensor: _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) n_dim = _tensor.dim() if n_dim == 4: img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() img_np = img_np.transpose(1, 2, 0) if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 3: img_np = _tensor.numpy() img_np = img_np.transpose(1, 2, 0) if img_np.shape[2] == 1: # gray image img_np = np.squeeze(img_np, axis=2) else: if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 2: img_np = _tensor.numpy() else: raise TypeError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}') if out_type == np.uint8: # Unlike MATLAB, numpy.unit8() WILL NOT round by default. img_np = (img_np * 255.0).round() img_np = img_np.astype(out_type) result.append(img_np) if len(result) == 1: result = result[0] return result class FaceRestoreWithModel: @classmethod def INPUT_TYPES(s): return {"required": { "upscale_model": ("UPSCALE_MODEL",), "image": ("IMAGE",), "facedetection": (["retinaface_resnet50", "retinaface_mobile0.25", "YOLOv5l", "YOLOv5n"],) }} RETURN_TYPES = ("IMAGE",) FUNCTION = "restore_face" CATEGORY = "facerestore" def __init__(self): self.face_helper = None def restore_face(self, upscale_model, image, facedetection): counter = 0 restored_img_list = [] for image_itm in image: device = model_management.get_torch_device() upscale_model.to(device) if self.face_helper is None: self.face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model=facedetection, save_ext='png', use_parse=True, device=device) image_np = 255. * image_itm.cpu().numpy().squeeze() image_np = image_np[:, :, ::-1] original_resolution = image_np.shape[0:2] if upscale_model is None or self.face_helper is None: return image_itm self.face_helper.clean_all() self.face_helper.read_image(image_np) self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) self.face_helper.align_warp_face() restored_face = None for idx, cropped_face in enumerate(self.face_helper.cropped_faces): cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) try: with torch.no_grad(): #output = upscale_model(cropped_face_t, w=strength, adain=True)[0] output = upscale_model(cropped_face_t)[0] restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) del output torch.cuda.empty_cache() except Exception as error: print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr) restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) restored_face = restored_face.astype('uint8') self.face_helper.add_restored_face(restored_face) self.face_helper.get_inverse_affine(None) restored_img = self.face_helper.paste_faces_to_input_image() restored_img = restored_img[:, :, ::-1] if original_resolution != restored_img.shape[0:2]: restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR) self.face_helper.clean_all() # restored_img = cv2.cvtColor(restored_face, cv2.COLOR_BGR2RGB) counter += 1 restored_img_np = np.array(restored_img).astype(np.float32) / 255.0 restored_img_tensor = torch.from_numpy(restored_img_np).unsqueeze(0) restored_img_list.append(restored_img_tensor) for i in range(len(image)): image[i] = restored_img_list[i] return (image,) NODE_CLASS_MAPPINGS = { "FaceRestoreWithModel": FaceRestoreWithModel, }