import torch import logging try: import comfy_kitchen as ck from comfy_kitchen.tensor import ( QuantizedTensor, QuantizedLayout, TensorCoreFP8Layout as _CKFp8Layout, TensorCoreNVFP4Layout, # Direct import, no wrapper needed register_layout_op, register_layout_class, get_layout_class, ) _CK_AVAILABLE = True ck.registry.disable("triton") for k, v in ck.list_backends().items(): logging.info(f"Found comfy_kitchen backend {k}: {v}") except ImportError as e: logging.error(f"Failed to import comfy_kitchen, Error: {e}, fp8 and fp4 support will not be available.") _CK_AVAILABLE = False class QuantizedTensor: pass class _CKFp8Layout: pass class TensorCoreNVFP4Layout: pass def register_layout_class(name, cls): pass def get_layout_class(name): return None import comfy.float # ============================================================================== # FP8 Layouts with Comfy-Specific Extensions # ============================================================================== class _TensorCoreFP8LayoutBase(_CKFp8Layout): FP8_DTYPE = None # Must be overridden in subclass @classmethod def quantize(cls, tensor, scale=None, stochastic_rounding=0, inplace_ops=False): if cls.FP8_DTYPE is None: raise NotImplementedError(f"{cls.__name__} must define FP8_DTYPE") orig_dtype = tensor.dtype orig_shape = tuple(tensor.shape) if isinstance(scale, str) and scale == "recalculate": scale = torch.amax(tensor.abs()).to(dtype=torch.float32) / torch.finfo(cls.FP8_DTYPE).max if tensor.dtype not in [torch.float32, torch.bfloat16]: # Prevent scale from being too small tensor_info = torch.finfo(tensor.dtype) scale = (1.0 / torch.clamp((1.0 / scale), min=tensor_info.min, max=tensor_info.max)) if scale is None: scale = torch.ones((), device=tensor.device, dtype=torch.float32) if not isinstance(scale, torch.Tensor): scale = torch.tensor(scale, device=tensor.device, dtype=torch.float32) if stochastic_rounding > 0: if inplace_ops: tensor *= (1.0 / scale).to(tensor.dtype) else: tensor = tensor * (1.0 / scale).to(tensor.dtype) qdata = comfy.float.stochastic_rounding(tensor, dtype=cls.FP8_DTYPE, seed=stochastic_rounding) else: qdata = ck.quantize_per_tensor_fp8(tensor, scale, cls.FP8_DTYPE) params = cls.Params(scale=scale.float(), orig_dtype=orig_dtype, orig_shape=orig_shape) return qdata, params class TensorCoreFP8E4M3Layout(_TensorCoreFP8LayoutBase): FP8_DTYPE = torch.float8_e4m3fn class TensorCoreFP8E5M2Layout(_TensorCoreFP8LayoutBase): FP8_DTYPE = torch.float8_e5m2 # Backward compatibility alias - default to E4M3 TensorCoreFP8Layout = TensorCoreFP8E4M3Layout # ============================================================================== # Registry # ============================================================================== register_layout_class("TensorCoreFP8Layout", TensorCoreFP8Layout) register_layout_class("TensorCoreFP8E4M3Layout", TensorCoreFP8E4M3Layout) register_layout_class("TensorCoreFP8E5M2Layout", TensorCoreFP8E5M2Layout) register_layout_class("TensorCoreNVFP4Layout", TensorCoreNVFP4Layout) QUANT_ALGOS = { "float8_e4m3fn": { "storage_t": torch.float8_e4m3fn, "parameters": {"weight_scale", "input_scale"}, "comfy_tensor_layout": "TensorCoreFP8E4M3Layout", }, "float8_e5m2": { "storage_t": torch.float8_e5m2, "parameters": {"weight_scale", "input_scale"}, "comfy_tensor_layout": "TensorCoreFP8E5M2Layout", }, "nvfp4": { "storage_t": torch.uint8, "parameters": {"weight_scale", "weight_scale_2", "input_scale"}, "comfy_tensor_layout": "TensorCoreNVFP4Layout", "group_size": 16, }, } # ============================================================================== # Re-exports for backward compatibility # ============================================================================== __all__ = [ "QuantizedTensor", "QuantizedLayout", "TensorCoreFP8Layout", "TensorCoreFP8E4M3Layout", "TensorCoreFP8E5M2Layout", "TensorCoreNVFP4Layout", "QUANT_ALGOS", "register_layout_op", ]