# Hardware & Software Compatibility This project is rigorously tested on specific hardware and software configurations to ensure stability and performance. ## Compatibility Matrix ### Linux | Hardware | Python | CUDA / ROCm | PyTorch | Torch-TensorRT | Container Image | Status | | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | **NVIDIA RTX 3090** (24GB) | 3.12 | 12.9.1 | Latest | 2.8.0a0 | `nvcr.io/nvidia/pytorch:25.06-py3` | ✅ Automated | | **NVIDIA RTX 3090** (24GB) | 3.12 | 12.8.1 | Latest | 2.7.0a0 | `nvcr.io/nvidia/pytorch:25.03-py3` (LTS) | ✅ Automated | | **NVIDIA RTX 3090** (24GB) | 3.10 | 12.6.2 | Latest | 2.5.0a0 | `nvcr.io/nvidia/pytorch:24.10-py3` | ✅ Automated | | **NVIDIA RTX 3090** (24GB) | 3.10 | 12.3.2 | Latest | 2.2.0a0 | `nvcr.io/nvidia/pytorch:23.12-py3` | ✅ Automated | | **AMD RX 7600** (8GB) | 3.12 | ROCm 7.0 | 2.7.1 (Nightly) | N/A | `rocm/pytorch:rocm7.0_ubuntu24.04_py3.12_pytorch_release_2.7.1` | ✅ Automated | **AMD Note:** Automated testing for AMD uses a specific nightly build of PyTorch 2.7.1 optimized for RDNA 3 (`gfx110X`) from `https://rocm.nightlies.amd.com/v2/gfx110X-dgpu/`. ### macOS | Hardware | Python | Acceleration | Status | | :--- | :--- | :--- | :--- | | **Apple Silicon** (M1/M2/M3) | 3.12 | MPS (Metal Performance Shaders) | ✅ Automated (macOS 14 Runner) | ### Windows Windows support is manually verified. | Hardware | Python | CUDA | Drivers | PyTorch | Status | | :--- | :--- | :--- | :--- | :--- | :--- | | **NVIDIA RTX 3090** | 3.10 - 3.12 | 12.8 | 560+ | 2.7, 2.8, 2.9 | ✅ Manually Verified | ## AMD ROCm Support for Other Architectures You can install ComfyUI with acceleration on other AMD architectures by pointing `uv` to the correct package index. ### Architecture Table Find your GPU in the table below to determine the correct index URL. | Series | Models (Examples) | Architecture | Index URL | | :--- | :--- | :--- | :--- | | **RX 9000** | RX 9070 / XT, RX 9060 / XT | RDNA 4 (`gfx1200`, `gfx1201`) | `https://rocm.nightlies.amd.com/v2/gfx120X-all/` | | **RX 7000** | RX 7900 XTX, 7800 XT, 7600 | RDNA 3 (`gfx1100`, `gfx1101`, `gfx1102`) | `https://rocm.nightlies.amd.com/v2/gfx110X-all/` | | **RX 7000 (M)** | Radeon 780M (Laptop), 7700S | RDNA 3 (`gfx1103`) | `https://rocm.nightlies.amd.com/v2/gfx110X-all/` | | **Strix Halo** | Strix Halo iGPU | RDNA 3.5 (`gfx1151`) | `https://rocm.nightlies.amd.com/v2/gfx1151/` | | **Instinct** | MI300A, MI300X | CDNA 3 (`gfx942`) | `https://rocm.nightlies.amd.com/v2/gfx94X-dcgpu/` | | **Instinct** | MI350X, MI355X | CDNA 4 (`gfx950`) | `https://rocm.nightlies.amd.com/v2/gfx950-dcgpu/` | ### Installation Examples Use `uv pip install` with the `--index-url` corresponding to your hardware. **RX 9000 Series (RDNA 4)** ```bash uv pip install --index-url https://rocm.nightlies.amd.com/v2/gfx120X-all/ --pre torch torchaudio torchvision ``` **RX 7000 Series (RDNA 3)** ```bash uv pip install --index-url https://rocm.nightlies.amd.com/v2/gfx110X-all/ --pre torch torchaudio torchvision ``` **RX 6000 Series (RDNA 2)** ```bash uv pip install --torch-backend=auto --pre torch torchvision torchaudio ``` **RX 5000 Series (RDNA 1)** ```bash uv pip install --torch-backend=auto --pre torch torchvision torchaudio ``` **Instinct MI300** ```bash uv pip install --index-url https://rocm.nightlies.amd.com/v2/gfx94X-dcgpu/ --pre torch torchaudio torchvision ``` ## Notes - **NVIDIA:** Automated testing uses official NVIDIA PyTorch containers to ensure compatibility with the latest deep learning stack. - **AMD:** Automated testing targets ROCm 7.0 on RDNA 3 architecture (RX 7000 series). - **macOS:** Tested on macOS 14 runners with Python 3.12 using the `mps` backend for acceleration. - **Windows:** While not part of the automated CI loop, Windows builds are manually verified against recent PyTorch and CUDA versions on standard consumer hardware.