import torch import comfy.model_management from typing_extensions import override from comfy_api.latest import ComfyExtension, io COMPUTED_RESO_GROUPS = ['512x2048', '512x1984', '512x1920', '512x1856', '512x1792', '512x1728', '512x1664', '512x1600', '512x1536', '576x1472', '640x1408', '704x1344', '768x1280', '832x1216', '896x1152', '960x1088', '1024x1024', '1088x960', '1152x896', '1216x832', '1280x768', '1344x704', '1408x640', '1472x576', '1536x512', '1600x512', '1664x512', '1728x512', '1792x512', '1856x512', '1920x512', '1984x512', '2048x512'] RATIOS = [torch.tensor(int(r.split("x")[0]) / int(r.split("x")[1])) for r in COMPUTED_RESO_GROUPS] def get_target_size(height, width): ratio = height / width idx = torch.argmin(torch.abs(torch.tensor(RATIOS) - ratio)) reso = COMPUTED_RESO_GROUPS[idx] return reso.split("x") class EmptyLatentHunyuanImage3(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="EmptyLatentHunyuanImage3", display_name="EmptyLatentHunyuanImage3", category="image/latent", inputs = [ io.Int.Input("height", min = 1, default = 512), io.Int.Input("width", min = 1, default = 512), io.Int.Input("batch_size", min = 1, max = 48_000, default = 1), ], outputs=[io.Latent.Output(display_name="latent")] ) @classmethod def execute(cls, height, width, batch_size): height, width = get_target_size(height, width) latent = torch.randn(batch_size, 32, int(height) // 16, int(width) // 16, device=comfy.model_management.intermediate_device()) return io.NodeOutput({"samples": latent, "type": "hunyuan_image_3"}, ) class HunyuanImage3Conditioning(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="HunyuanImage3Conditioning", display_name="HunyuanImage3Conditioning", category="conditioning/video_models", inputs = [ io.Conditioning.Input("text_encoding_positive"), io.Clip.Input("clip"), io.Model.Input("model"), io.Conditioning.Input("vae_encoding", optional=True), io.Conditioning.Input("vit_encoding", optional=True), io.Conditioning.Input("text_encoding_negative", optional = True), ], outputs=[io.Conditioning.Output(display_name= "positive"), io.Conditioning.Output(display_name="negative")] ) @classmethod def execute(cls, text_encoding, clip, model, text_encoding_negative=None, vae_encoding = None, vit_encoding = None): encode_fn = clip.tokenizer.tokenizer.convert_tokens_to_ids special_fn = clip.tokenizer.tokenizer.added_tokens_encoder word_embed = clip.wte patch_embed = model.patch_embed t_embed = model.time_embed text_tokens = text_encoding[0][0] batch_size, _, hidden_size = text_tokens.shape def fn(string, func = encode_fn): return word_embed(torch.tensor(func(string) if not isinstance(func, dict) else func[string], device=comfy.model_management.intermediate_device()))\ .view(1, 1, hidden_size).expand(batch_size, -1, hidden_size) text_tokens = torch.cat([fn("<|startoftext|>"), text_tokens], dim = 1) if vae_encoding is not None or vit_encoding is not None: vae_encoding, _, _ = patch_embed(vae_encoding, t_embed(torch.tensor([0]).repeat(vae_encoding.size(0)))) # should dynamically change in model logic joint_image = torch.cat([fn(""), fn("", special_fn), fn("", special_fn), fn("", special_fn), vae_encoding, fn(""), vit_encoding, fn(""), fn("<|endoftext|>")], dim = 1) vae_mask = torch.ones(joint_image.size(1)) vae_mask[:3] = torch.zeros(3); vae_mask[vae_encoding.size(1) + 4:] = torch.zeros(len(vae_mask[vae_encoding.size(1) + 4:])) vae_mask = vae_mask.unsqueeze(0).unsqueeze(-1) else: pad_token = torch.tensor([-100.0]).view(1, 1, 1).expand(batch_size, 1, hidden_size) joint_image = torch.cat([pad_token, fn("<|endoftext|>")], dim = 1) # look into vae_mask = torch.empty_like(joint_image) ragged_tensors = torch.nested.nested_tensor([joint_image, vae_mask, text_tokens.to(joint_image.dtype)]) uncond_ragged_tensors = None if text_encoding_negative is not None: uncond_ragged_tensors, _ = cls.execute(vae_encoding, vit_encoding, text_encoding_negative, clip=clip, text_encoding_negative = None) else: uncond_ragged_tensors = torch.nested.nested_tensor([torch.zeros_like(t) for t in ragged_tensors.unbind()]) if uncond_ragged_tensors is not None: positive = [[ragged_tensors, {}]] negative = [[uncond_ragged_tensors, {}]] else: positive = ragged_tensors negative = uncond_ragged_tensors return positive, negative class Image3Extension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ HunyuanImage3Conditioning, EmptyLatentHunyuanImage3 ] async def comfy_entrypoint() -> Image3Extension: return Image3Extension()