import torch import triton import triton.language as tl @triton.jit def quant_per_block_int8_kernel(Input, Output, Scale, L, stride_iz, stride_ih, stride_in, stride_oz, stride_oh, stride_on, stride_sz, stride_sh, sm_scale, C: tl.constexpr, BLK: tl.constexpr): off_blk = tl.program_id(0) off_h = tl.program_id(1) off_b = tl.program_id(2) offs_n = off_blk * BLK + tl.arange(0, BLK) offs_k = tl.arange(0, C) input_ptrs = Input + off_b * stride_iz + off_h * stride_ih + offs_n[:, None] * stride_in + offs_k[None, :] output_ptrs = Output + off_b * stride_oz + off_h * stride_oh + offs_n[:, None] * stride_on + offs_k[None, :] scale_ptrs = Scale + off_b * stride_sz + off_h * stride_sh + off_blk x = tl.load(input_ptrs, mask=offs_n[:, None] < L) x = x.to(tl.float32) x *= sm_scale scale = tl.max(tl.abs(x)) / 127. x_int8 = x / scale x_int8 += 0.5 * tl.where(x_int8 >= 0, 1, -1) x_int8 = x_int8.to(tl.int8) tl.store(output_ptrs, x_int8, mask=offs_n[:, None] < L) tl.store(scale_ptrs, scale) def per_block_int8(q, k, BLKQ=32, BLKK=16, sm_scale=None, tensor_layout="HND"): q_int8 = torch.empty(q.shape, dtype=torch.int8, device=q.device) k_int8 = torch.empty(k.shape, dtype=torch.int8, device=k.device) if tensor_layout == "HND": b, h_qo, qo_len, head_dim = q.shape _, h_kv, kv_len, _ = k.shape stride_bz_q, stride_h_q, stride_seq_q = q.stride(0), q.stride(1), q.stride(2) stride_bz_qo, stride_h_qo, stride_seq_qo = q_int8.stride(0), q_int8.stride(1), q_int8.stride(2) stride_bz_k, stride_h_k, stride_seq_k = k.stride(0), k.stride(1), k.stride(2) stride_bz_ko, stride_h_ko, stride_seq_ko = k_int8.stride(0), k_int8.stride(1), k_int8.stride(2) elif tensor_layout == "NHD": b, qo_len, h_qo, head_dim = q.shape _, kv_len, h_kv, _ = k.shape stride_bz_q, stride_h_q, stride_seq_q = q.stride(0), q.stride(2), q.stride(1) stride_bz_qo, stride_h_qo, stride_seq_qo = q_int8.stride(0), q_int8.stride(2), q_int8.stride(1) stride_bz_k, stride_h_k, stride_seq_k = k.stride(0), k.stride(2), k.stride(1) stride_bz_ko, stride_h_ko, stride_seq_ko = k_int8.stride(0), k_int8.stride(2), k_int8.stride(1) else: raise ValueError(f"Unknown tensor layout: {tensor_layout}") q_scale = torch.empty((b, h_qo, (qo_len + BLKQ - 1) // BLKQ, 1), device=q.device, dtype=torch.float32) k_scale = torch.empty((b, h_kv, (kv_len + BLKK - 1) // BLKK, 1), device=q.device, dtype=torch.float32) if sm_scale is None: sm_scale = head_dim**-0.5 grid = ((qo_len + BLKQ - 1) // BLKQ, h_qo, b) quant_per_block_int8_kernel[grid]( q, q_int8, q_scale, qo_len, stride_bz_q, stride_h_q, stride_seq_q, stride_bz_qo, stride_h_qo, stride_seq_qo, q_scale.stride(0), q_scale.stride(1), sm_scale=(sm_scale * 1.44269504), C=head_dim, BLK=BLKQ ) grid = ((kv_len + BLKK - 1) // BLKK, h_kv, b) quant_per_block_int8_kernel[grid]( k, k_int8, k_scale, kv_len, stride_bz_k, stride_h_k, stride_seq_k, stride_bz_ko, stride_h_ko, stride_seq_ko, k_scale.stride(0), k_scale.stride(1), sm_scale=1.0, C=head_dim, BLK=BLKK ) return q_int8, q_scale, k_int8, k_scale