""" This file is part of ComfyUI. Copyright (C) 2024 Comfy This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ from __future__ import annotations import collections import logging import weakref from dataclasses import dataclass, field from types import SimpleNamespace from typing import Dict, MutableMapping, Optional, Set import torch from . import safetensors_stream ALLOW_GDS = False PIN_IF_CPU = False DISK_WEIGHTS_ENABLED = False BASE_LOAD_FROM_STATE_DICT = torch.nn.Module._load_from_state_dict LAZY_MODULE_STATE = weakref.WeakKeyDictionary() DISK_MATERIALIZATION_STATE = weakref.WeakKeyDictionary() _MISSING = object() @dataclass class DiskTensorRef: state_dict: object key: str meta: object requires_grad: bool is_buffer: bool def load( self, device: torch.device, allow_gds: bool, pin_if_cpu: bool, dtype_override: Optional[torch.dtype] = None, ) -> torch.Tensor: dtype = dtype_override or getattr(self.meta, "dtype", None) if hasattr(self.state_dict, "get_tensor"): return self.state_dict.get_tensor( self.key, device=device, dtype=dtype, allow_gds=allow_gds, pin_if_cpu=pin_if_cpu, ) tensor = self.state_dict[self.key] if device is not None and tensor.device != device: tensor = tensor.to(device=device) if dtype is not None and tensor.dtype != dtype: tensor = tensor.to(dtype=dtype) return tensor class DiskWeightRegistry: def __init__(self): self._registry = weakref.WeakKeyDictionary() def register(self, module: torch.nn.Module, name: str, ref: DiskTensorRef): module_refs = self._registry.setdefault(module, {}) module_refs[name] = ref def get(self, module: torch.nn.Module) -> Optional[Dict[str, DiskTensorRef]]: return self._registry.get(module) def has(self, module: torch.nn.Module) -> bool: return module in self._registry @dataclass class CacheEntry: module_ref: weakref.ReferenceType name: str size_bytes: int is_buffer: bool class DiskWeightCache: def __init__(self, max_bytes: int = 0): self.max_bytes = max_bytes self.current_bytes = 0 self._entries: "collections.OrderedDict[tuple[int, str], CacheEntry]" = collections.OrderedDict() def set_limit(self, max_bytes: int): self.max_bytes = max_bytes self._evict_if_needed() def _entry_key(self, module: torch.nn.Module, name: str) -> tuple[int, str]: return (id(module), name) def record(self, module: torch.nn.Module, name: str, tensor: torch.Tensor, is_buffer: bool): if tensor.device.type != "cpu": return size_bytes = tensor.numel() * tensor.element_size() key = self._entry_key(module, name) if key in self._entries: entry = self._entries.pop(key) self.current_bytes -= entry.size_bytes module_ref = weakref.ref(module, self._drop_module_entries) self._entries[key] = CacheEntry(module_ref=module_ref, name=name, size_bytes=size_bytes, is_buffer=is_buffer) self.current_bytes += size_bytes self._evict_if_needed() def touch(self, module: torch.nn.Module, name: str): key = self._entry_key(module, name) if key in self._entries: entry = self._entries.pop(key) self._entries[key] = entry def evict_bytes(self, bytes_to_free: int): freed = 0 while self._entries and freed < bytes_to_free: _, entry = self._entries.popitem(last=False) freed += entry.size_bytes self.current_bytes -= entry.size_bytes module = entry.module_ref() if module is not None: _evict_module_weight(module, entry.name, entry.is_buffer) return freed def remove_module(self, module: torch.nn.Module): to_remove = [] for key, entry in self._entries.items(): if entry.module_ref() is module: to_remove.append(key) for key in to_remove: entry = self._entries.pop(key) self.current_bytes -= entry.size_bytes def _drop_module_entries(self, module_ref: weakref.ReferenceType): to_remove = [] for key, entry in self._entries.items(): if entry.module_ref is module_ref: to_remove.append(key) for key in to_remove: entry = self._entries.pop(key) self.current_bytes -= entry.size_bytes def _evict_if_needed(self): while self._entries and self.current_bytes > self.max_bytes: _, entry = self._entries.popitem(last=False) self.current_bytes -= entry.size_bytes module = entry.module_ref() if module is not None: _evict_module_weight(module, entry.name, entry.is_buffer) REGISTRY = DiskWeightRegistry() CACHE = DiskWeightCache(0) LOGGER = logging.getLogger(__name__) def configure(cache_bytes: int, allow_gds: bool, pin_if_cpu: bool, enabled: bool = True): global ALLOW_GDS, PIN_IF_CPU, DISK_WEIGHTS_ENABLED ALLOW_GDS = allow_gds PIN_IF_CPU = pin_if_cpu DISK_WEIGHTS_ENABLED = enabled CACHE.set_limit(cache_bytes if enabled else 0) if not enabled: CACHE._entries.clear() CACHE.current_bytes = 0 def disk_weights_enabled() -> bool: return DISK_WEIGHTS_ENABLED def register_module_weights(module: torch.nn.Module, state_dict, prefix: str = ""): if not disk_weights_enabled(): return if not hasattr(state_dict, "meta") or not hasattr(state_dict, "get_tensor"): return for module_name, submodule in module.named_modules(): module_prefix = f"{prefix}{module_name}." if module_name else prefix for name, param in submodule.named_parameters(recurse=False): key = f"{module_prefix}{name}" if module_prefix else name if key in state_dict: meta = state_dict.meta(key) ref = DiskTensorRef(state_dict=state_dict, key=key, meta=meta, requires_grad=param.requires_grad, is_buffer=False) REGISTRY.register(submodule, name, ref) if param.device.type == "cpu": CACHE.record(submodule, name, param, is_buffer=False) for name, buf in submodule.named_buffers(recurse=False): key = f"{module_prefix}{name}" if module_prefix else name if key in state_dict and buf is not None: meta = state_dict.meta(key) ref = DiskTensorRef(state_dict=state_dict, key=key, meta=meta, requires_grad=False, is_buffer=True) REGISTRY.register(submodule, name, ref) if buf.device.type == "cpu": CACHE.record(submodule, name, buf, is_buffer=True) @dataclass class LazyModuleState: state_dict: MutableMapping prefix: str loaded: bool = False @dataclass class DiskMaterializationState: loaded_keys: Set[str] = field(default_factory=set) deferred_keys: Set[str] = field(default_factory=set) loaded_bytes: int = 0 deferred_bytes: int = 0 def _get_materialization_state(module: torch.nn.Module) -> DiskMaterializationState: state = DISK_MATERIALIZATION_STATE.get(module) if state is None: state = DiskMaterializationState() DISK_MATERIALIZATION_STATE[module] = state return state def _update_disk_state_attrs(module: torch.nn.Module, state: DiskMaterializationState): module.disk_loaded_weight_memory = state.loaded_bytes module.disk_offload_buffer_memory = state.deferred_bytes def _tensor_nbytes(tensor: torch.Tensor) -> int: return tensor.numel() * tensor.element_size() def _meta_nbytes(meta) -> Optional[int]: return getattr(meta, "nbytes", None) def _meta_tensor(meta, dtype_override: Optional[torch.dtype] = None) -> torch.Tensor: dtype = dtype_override or getattr(meta, "dtype", None) shape = getattr(meta, "shape", None) if dtype is None or shape is None: raise KeyError("Missing metadata for meta tensor") return torch.empty(shape, dtype=dtype, device="meta") def _state_dict_meta(state_dict: MutableMapping, key: str): if hasattr(state_dict, "meta"): return state_dict.meta(key) if hasattr(state_dict, "get_tensor"): t = state_dict.get_tensor(key, device=torch.device("meta")) else: t = state_dict[key] numel = t.numel() return SimpleNamespace( dtype=t.dtype, shape=tuple(t.shape), numel=numel, nbytes=numel * t.element_size(), ) def _rebuild_materialization_state(module: torch.nn.Module, refs: Dict[str, DiskTensorRef], state: DiskMaterializationState): state.loaded_keys.clear() state.deferred_keys.clear() state.loaded_bytes = 0 state.deferred_bytes = 0 for name, ref in refs.items(): if name in module._parameters: tensor = module._parameters[name] elif name in module._buffers: tensor = module._buffers[name] else: continue if tensor is None: continue nbytes = _meta_nbytes(ref.meta) or _tensor_nbytes(tensor) if tensor.device.type == "meta": state.deferred_keys.add(name) state.deferred_bytes += nbytes else: state.loaded_keys.add(name) state.loaded_bytes += nbytes _update_disk_state_attrs(module, state) def _summarize_module_bytes(module: torch.nn.Module, refs: Dict[str, DiskTensorRef]): cpu_bytes = 0 gpu_bytes = 0 meta_bytes = 0 total_bytes = 0 for name, ref in refs.items(): tensor = None if name in module._parameters: tensor = module._parameters[name] elif name in module._buffers: tensor = module._buffers[name] if tensor is None: continue nbytes = _meta_nbytes(ref.meta) if nbytes is None: nbytes = _tensor_nbytes(tensor) total_bytes += nbytes if tensor.device.type == "meta": meta_bytes += nbytes elif tensor.device.type == "cpu": cpu_bytes += nbytes else: gpu_bytes += nbytes return total_bytes, cpu_bytes, gpu_bytes, meta_bytes def _log_materialization( module: torch.nn.Module, target_device: torch.device, free_mem: int, refs: Dict[str, DiskTensorRef], state: DiskMaterializationState, context: str, ): total_bytes, cpu_bytes, gpu_bytes, meta_bytes = _summarize_module_bytes(module, refs) if total_bytes == 0: return partial = meta_bytes > 0 LOGGER.info( "%s: module=%s dest=%s load=%0.2fMB free=%0.2fMB partial=%s " "loaded=%0.2fMB meta=%0.2fMB cpu=%0.2fMB gpu=%0.2fMB full_load=%s", context, module.__class__.__name__, target_device, total_bytes / (1024 * 1024), free_mem / (1024 * 1024), partial, state.loaded_bytes / (1024 * 1024), state.deferred_bytes / (1024 * 1024), cpu_bytes / (1024 * 1024), gpu_bytes / (1024 * 1024), not partial, ) def _device_free_memory(device: torch.device) -> int: from . import model_management return int(model_management.get_free_memory(device)) def _evict_ram_for_budget(required_bytes: int) -> int: if required_bytes <= 0: return 0 return evict_ram_cache(required_bytes) def _maybe_free_ram_budget(device: torch.device, required_bytes: int) -> int: free_mem = _device_free_memory(device) if device.type == "cpu" and free_mem < required_bytes: _evict_ram_for_budget(required_bytes - free_mem) free_mem = _device_free_memory(device) return free_mem def _choose_alternate_device(device: torch.device) -> Optional[torch.device]: from . import model_management if device.type == "cpu": alt = model_management.get_torch_device() if alt.type != "cpu": return alt else: return torch.device("cpu") return None class _BudgetedStateDict(MutableMapping): is_stream_state_dict = True def __init__( self, base: MutableMapping, allowed_keys: Set[str], device: torch.device, allow_gds: Optional[bool] = None, pin_if_cpu: bool = False, overrides: Optional[Dict[str, torch.Tensor]] = None, ): self._base = base self._allowed_keys = allowed_keys self._device = device self._allow_gds = allow_gds self._pin_if_cpu = pin_if_cpu self._overrides = overrides or {} self._deleted: Set[str] = set() def _get_meta(self, key: str): if key in self._overrides: t = self._overrides[key] return safetensors_stream.TensorMeta( dtype=t.dtype, shape=tuple(t.shape), numel=t.numel(), nbytes=_tensor_nbytes(t), data_offsets=(0, _tensor_nbytes(t)), filename="", fst_dtype=None, strides=tuple(t.stride()), ) if hasattr(self._base, "meta"): return self._base.meta(key) if hasattr(self._base, "get_tensor"): t = self._base.get_tensor(key, device=torch.device("meta")) else: t = self._base[key] return safetensors_stream.TensorMeta( dtype=t.dtype, shape=tuple(t.shape), numel=t.numel(), nbytes=_tensor_nbytes(t), data_offsets=(0, _tensor_nbytes(t)), filename="", fst_dtype=None, strides=tuple(t.stride()), ) def get_tensor( self, key: str, *, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, allow_gds: Optional[bool] = None, pin_if_cpu: bool = False, ) -> torch.Tensor: if key in self._overrides: t = self._overrides[key] if device is not None and t.device != device: t = t.to(device=device) if dtype is not None and t.dtype != dtype: t = t.to(dtype=dtype) return t if key in self._deleted: raise KeyError(key) if key not in self._allowed_keys: meta = self._get_meta(key) target_dtype = dtype or meta.dtype return _meta_tensor(meta, dtype_override=target_dtype) if hasattr(self._base, "get_tensor"): return self._base.get_tensor( key, device=self._device if device is None else device, dtype=dtype, allow_gds=self._allow_gds if allow_gds is None else allow_gds, pin_if_cpu=self._pin_if_cpu if not pin_if_cpu else pin_if_cpu, ) t = self._base[key] if device is not None and t.device != device: t = t.to(device=device) if dtype is not None and t.dtype != dtype: t = t.to(dtype=dtype) return t def __getitem__(self, key: str) -> torch.Tensor: return self.get_tensor(key) def __setitem__(self, key: str, value: torch.Tensor) -> None: self._overrides[key] = value self._deleted.discard(key) def __delitem__(self, key: str) -> None: if key in self._overrides: del self._overrides[key] return if key in self._deleted: raise KeyError(key) self._deleted.add(key) def __iter__(self): for k in self._base.keys(): if k in self._deleted: continue yield k for k in self._overrides.keys(): if k not in self._deleted: yield k def __len__(self) -> int: base_keys = list(self._base.keys()) return len(base_keys) - len(self._deleted) + len(self._overrides) def pop(self, key: str, default: object = _MISSING) -> torch.Tensor: if key in self._overrides: return self._overrides.pop(key) if key in self._deleted: if default is _MISSING: raise KeyError(key) return default if key not in self._base: if default is _MISSING: raise KeyError(key) return default self._deleted.add(key) return self.get_tensor(key) def meta(self, key: str): return self._get_meta(key) def _has_custom_load(module: torch.nn.Module) -> bool: return module.__class__._load_from_state_dict is not BASE_LOAD_FROM_STATE_DICT def register_lazy_modules(model: torch.nn.Module, state_dict): if not hasattr(state_dict, "keys"): return for name, module in model.named_modules(): if not _has_custom_load(module): continue prefix = f"{name}." if name else "" if prefix: has_key = False for param_name in module._parameters.keys(): if f"{prefix}{param_name}" in state_dict: has_key = True break if not has_key: for buf_name in module._buffers.keys(): if f"{prefix}{buf_name}" in state_dict: has_key = True break if not has_key: continue view = safetensors_stream.FilterViewStateDict( state_dict, lambda k, p=prefix: k.startswith(p), mutate_base=False ) LAZY_MODULE_STATE[module] = LazyModuleState(state_dict=view, prefix=prefix) def _evict_module_weight(module: torch.nn.Module, name: str, is_buffer: bool): lazy_state = LAZY_MODULE_STATE.get(module) if lazy_state is not None: CACHE.remove_module(module) refs = REGISTRY.get(module) if refs: state = _get_materialization_state(module) for ref_name, disk_ref in refs.items(): shape = getattr(disk_ref.meta, "shape", None) dtype = getattr(disk_ref.meta, "dtype", None) if shape is None or dtype is None: continue meta_tensor = torch.empty(shape, dtype=dtype, device="meta") if disk_ref.is_buffer: module._buffers[ref_name] = meta_tensor else: module._parameters[ref_name] = torch.nn.Parameter(meta_tensor, requires_grad=disk_ref.requires_grad) nbytes = _meta_nbytes(disk_ref.meta) if nbytes is not None: state.loaded_keys.discard(ref_name) if ref_name not in state.deferred_keys: state.deferred_keys.add(ref_name) state.deferred_bytes += nbytes state.loaded_bytes = max(0, state.loaded_bytes - nbytes) _update_disk_state_attrs(module, state) lazy_state.loaded = False return ref = REGISTRY.get(module) if not ref or name not in ref: return disk_ref = ref[name] shape = getattr(disk_ref.meta, "shape", None) dtype = getattr(disk_ref.meta, "dtype", None) if shape is None or dtype is None: return meta_tensor = torch.empty(shape, dtype=dtype, device="meta") if is_buffer: module._buffers[name] = meta_tensor else: module._parameters[name] = torch.nn.Parameter(meta_tensor, requires_grad=disk_ref.requires_grad) state = _get_materialization_state(module) nbytes = _meta_nbytes(disk_ref.meta) if nbytes is not None: state.loaded_keys.discard(name) if name not in state.deferred_keys: state.deferred_keys.add(name) state.deferred_bytes += nbytes state.loaded_bytes = max(0, state.loaded_bytes - nbytes) _update_disk_state_attrs(module, state) def _find_tensor_device(args, kwargs) -> Optional[torch.device]: def check(obj): if torch.is_tensor(obj): return obj.device if isinstance(obj, (list, tuple)): for item in obj: dev = check(item) if dev is not None: return dev if isinstance(obj, dict): for item in obj.values(): dev = check(item) if dev is not None: return dev return None dev = check(args) if dev is not None: return dev return check(kwargs) def _find_tensor_dtype(args, kwargs) -> Optional[torch.dtype]: def check(obj): if torch.is_tensor(obj): return obj.dtype if isinstance(obj, (list, tuple)): for item in obj: dtype = check(item) if dtype is not None: return dtype if isinstance(obj, dict): for item in obj.values(): dtype = check(item) if dtype is not None: return dtype return None dtype = check(args) if dtype is not None: return dtype return check(kwargs) def ensure_module_materialized( module: torch.nn.Module, target_device: torch.device, fallback_device: Optional[torch.device] = None, dtype_override: Optional[torch.dtype] = None, ): lazy_state = LAZY_MODULE_STATE.get(module) if lazy_state is not None: _materialize_module_from_state_dict(module, lazy_state, target_device) return refs = REGISTRY.get(module) if not refs: return state = _get_materialization_state(module) _rebuild_materialization_state(module, refs, state) free_mem_start = _device_free_memory(target_device) remaining_budget = free_mem_start for name in sorted(refs.keys()): disk_ref = refs[name] if name in module._parameters: current = module._parameters[name] is_buffer = False elif name in module._buffers: current = module._buffers[name] is_buffer = True else: continue if current is None: continue if current.device.type != "meta" and current.device == target_device: if dtype_override is not None and current.dtype != dtype_override: tensor = current.to(device=target_device, dtype=dtype_override) if is_buffer: module._buffers[name] = tensor else: module._parameters[name] = torch.nn.Parameter(tensor, requires_grad=disk_ref.requires_grad) if tensor.device.type == "cpu": CACHE.record(module, name, tensor, is_buffer=is_buffer) else: if current.device.type == "cpu": CACHE.touch(module, name) continue meta_nbytes = _meta_nbytes(disk_ref.meta) if meta_nbytes is None: continue required_bytes = meta_nbytes if target_device.type == "cpu": free_mem = _maybe_free_ram_budget(target_device, required_bytes) remaining_budget = min(remaining_budget, free_mem) if required_bytes > remaining_budget: if fallback_device is not None and fallback_device != target_device: fallback_free = _maybe_free_ram_budget(fallback_device, required_bytes) if fallback_free >= required_bytes: target_for_load = fallback_device else: continue else: continue else: target_for_load = target_device if current.device.type == "meta": tensor = disk_ref.load(target_for_load, ALLOW_GDS, PIN_IF_CPU, dtype_override=dtype_override) else: if dtype_override is not None and current.dtype != dtype_override: tensor = current.to(device=target_for_load, dtype=dtype_override) else: tensor = current.to(device=target_for_load) if is_buffer: module._buffers[name] = tensor else: module._parameters[name] = torch.nn.Parameter(tensor, requires_grad=disk_ref.requires_grad) if tensor.device.type == "cpu": CACHE.record(module, name, tensor, is_buffer=is_buffer) remaining_budget = max(0, remaining_budget - required_bytes) _rebuild_materialization_state(module, refs, state) _log_materialization(module, target_device, free_mem_start, refs, state, "Disk weight materialized") def disk_weight_pre_hook(module: torch.nn.Module, args, kwargs={}): if not REGISTRY.has(module) and module not in LAZY_MODULE_STATE: return input_dtype = _find_tensor_dtype(args, kwargs) manual_cast_dtype = getattr(module, "manual_cast_dtype", None) dtype_override = manual_cast_dtype or input_dtype if getattr(module, "comfy_cast_weights", False): target_device = torch.device("cpu") fallback_device = _find_tensor_device(args, kwargs) else: target_device = _find_tensor_device(args, kwargs) or torch.device("cpu") fallback_device = None ensure_module_materialized( module, target_device, fallback_device=fallback_device, dtype_override=dtype_override, ) def attach_disk_weight_hooks(model: torch.nn.Module): if not disk_weights_enabled(): return for module in model.modules(): if getattr(module, "_disk_weight_hook_attached", False): continue module.register_forward_pre_hook(disk_weight_pre_hook) module._disk_weight_hook_attached = True def evict_ram_cache(bytes_to_free: int): if bytes_to_free <= 0: return 0 return CACHE.evict_bytes(bytes_to_free) def materialize_module_tree( module: torch.nn.Module, target_device: torch.device, dtype_override: Optional[torch.dtype] = None, ): if not disk_weights_enabled(): return for submodule in module.modules(): ensure_module_materialized(submodule, target_device, dtype_override=dtype_override) def _extract_to_device(args, kwargs) -> Optional[torch.device]: if "device" in kwargs and kwargs["device"] is not None: return torch.device(kwargs["device"]) for arg in args: if isinstance(arg, torch.device): return arg if isinstance(arg, str): return torch.device(arg) return None def _extract_to_dtype(args, kwargs) -> Optional[torch.dtype]: if "dtype" in kwargs and kwargs["dtype"] is not None: return kwargs["dtype"] for arg in args: if isinstance(arg, torch.dtype): return arg return None def _find_existing_device(module: torch.nn.Module) -> Optional[torch.device]: for param in module.parameters(recurse=True): if param is not None and param.device.type != "meta": return param.device for buf in module.buffers(recurse=True): if buf is not None and buf.device.type != "meta": return buf.device return None def module_to(module: torch.nn.Module, *args, **kwargs): if disk_weights_enabled(): target_device = _extract_to_device(args, kwargs) dtype_override = _extract_to_dtype(args, kwargs) if target_device is None: target_device = _find_existing_device(module) or torch.device("cpu") if dtype_override is None: dtype_override = getattr(module, "manual_cast_dtype", None) materialize_module_tree(module, target_device, dtype_override=dtype_override) return module.to(*args, **kwargs) def load_module_tensor( module: torch.nn.Module, name: str, device: torch.device, *, allow_alternate: bool = True, record_cache: bool = True, temporary: bool = False, dtype_override: Optional[torch.dtype] = None, ) -> Optional[torch.Tensor]: refs = REGISTRY.get(module) if not refs or name not in refs: return None if name in module._parameters: current = module._parameters[name] is_buffer = False elif name in module._buffers: current = module._buffers[name] is_buffer = True else: return None if current is None: return None if current.device.type != "meta": if current.device != device or (dtype_override is not None and current.dtype != dtype_override): tensor = current.to(device=device, dtype=dtype_override) if not temporary: if is_buffer: module._buffers[name] = tensor else: module._parameters[name] = torch.nn.Parameter(tensor, requires_grad=refs[name].requires_grad) _rebuild_materialization_state(module, refs, _get_materialization_state(module)) return tensor return current disk_ref = refs[name] required_bytes = _meta_nbytes(disk_ref.meta) if required_bytes is None: return current free_mem_start = _device_free_memory(device) free_mem = _maybe_free_ram_budget(device, required_bytes) load_device = device if free_mem < required_bytes and allow_alternate: alt = _choose_alternate_device(device) if alt is not None: alt_free = _maybe_free_ram_budget(alt, required_bytes) if alt_free >= required_bytes: load_device = alt else: state = _get_materialization_state(module) if name not in state.deferred_keys: state.deferred_keys.add(name) state.deferred_bytes += required_bytes _update_disk_state_attrs(module, state) _log_materialization(module, device, free_mem_start, refs, _get_materialization_state(module), "Disk weight deferred") return current else: state = _get_materialization_state(module) if name not in state.deferred_keys: state.deferred_keys.add(name) state.deferred_bytes += required_bytes _update_disk_state_attrs(module, state) _log_materialization(module, device, free_mem_start, refs, state, "Disk weight deferred") return current elif free_mem < required_bytes: state = _get_materialization_state(module) if name not in state.deferred_keys: state.deferred_keys.add(name) state.deferred_bytes += required_bytes _update_disk_state_attrs(module, state) _log_materialization(module, device, free_mem_start, refs, state, "Disk weight deferred") return current tensor = disk_ref.load(load_device, ALLOW_GDS, PIN_IF_CPU, dtype_override=dtype_override) if temporary: return tensor if is_buffer: module._buffers[name] = tensor else: module._parameters[name] = torch.nn.Parameter(tensor, requires_grad=disk_ref.requires_grad) if tensor.device.type == "cpu" and record_cache: CACHE.record(module, name, tensor, is_buffer=is_buffer) state = _get_materialization_state(module) _rebuild_materialization_state(module, refs, state) _log_materialization(module, load_device, free_mem_start, refs, state, "Disk weight loaded") return tensor def _replace_tensor(model: torch.nn.Module, name: str, tensor: torch.Tensor, is_buffer: bool, requires_grad: bool): parts = name.split(".") module = model for part in parts[:-1]: module = getattr(module, part) attr = parts[-1] if is_buffer: module._buffers[attr] = tensor else: module._parameters[attr] = torch.nn.Parameter(tensor, requires_grad=requires_grad) def _materialize_module_from_state_dict(module: torch.nn.Module, lazy_state: LazyModuleState, target_device: torch.device): missing_keys = [] unexpected_keys = [] error_msgs = [] metadata = getattr(lazy_state.state_dict, "_metadata", None) local_metadata = {} if metadata is None else metadata.get(lazy_state.prefix[:-1], {}) refs = REGISTRY.get(module) or {} state = _get_materialization_state(module) _rebuild_materialization_state(module, refs, state) keys = sorted(lazy_state.state_dict.keys()) existing = {} for name, param in module.named_parameters(recurse=False): key = f"{lazy_state.prefix}{name}" if key in lazy_state.state_dict and param is not None and param.device.type != "meta": existing[key] = param for name, buf in module.named_buffers(recurse=False): key = f"{lazy_state.prefix}{name}" if key in lazy_state.state_dict and buf is not None and buf.device.type != "meta": existing[key] = buf free_mem_start = _device_free_memory(target_device) remaining_budget = free_mem_start allowed = set(existing.keys()) for key in keys: if key in allowed: continue meta = _state_dict_meta(lazy_state.state_dict, key) required = _meta_nbytes(meta) if required is None: continue if target_device.type == "cpu": free_mem = _maybe_free_ram_budget(target_device, required) remaining_budget = min(remaining_budget, free_mem) if required <= remaining_budget: allowed.add(key) remaining_budget = max(0, remaining_budget - required) deferred_state_dict_keys = {key for key in keys if key not in allowed} state_dict = _BudgetedStateDict( lazy_state.state_dict, allowed_keys=allowed, device=target_device, allow_gds=ALLOW_GDS, pin_if_cpu=PIN_IF_CPU, overrides=existing, ) factory_device = None if hasattr(module, "factory_kwargs") and "device" in module.factory_kwargs: factory_device = module.factory_kwargs["device"] module.factory_kwargs["device"] = target_device try: module._load_from_state_dict( state_dict, lazy_state.prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs, ) incompatible = torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys) for hook in module._load_state_dict_post_hooks.values(): out = hook(module, incompatible) if out is not None: raise RuntimeError("load_state_dict post hook returned a value, which is unsupported.") finally: if factory_device is not None: module.factory_kwargs["device"] = factory_device if len(error_msgs) > 0: raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(module.__class__.__name__, "\n\t".join(error_msgs))) _rebuild_materialization_state(module, refs, state) lazy_state.loaded = len(deferred_state_dict_keys) == 0 _log_materialization(module, target_device, free_mem_start, refs, state, "Disk weight streamed") for name, param in module.named_parameters(recurse=False): if param.device.type == "cpu": CACHE.record(module, name, param, is_buffer=False) for name, buf in module.named_buffers(recurse=False): if buf is not None and buf.device.type == "cpu": CACHE.record(module, name, buf, is_buffer=True) def lazy_load_state_dict(model: torch.nn.Module, state_dict, strict: bool = False): model_keys = set() for name, _ in model.named_parameters(recurse=True): model_keys.add(name) for name, _ in model.named_buffers(recurse=True): model_keys.add(name) state_keys = set(state_dict.keys()) missing_keys = [k for k in model_keys if k not in state_keys] unexpected_keys = [k for k in state_keys if k not in model_keys] if strict: error_msgs = [] if len(unexpected_keys) > 0: error_msgs.append('Unexpected key(s) in state_dict: {}.'.format(', '.join(f'"{k}"' for k in unexpected_keys))) if len(missing_keys) > 0: error_msgs.append('Missing key(s) in state_dict: {}.'.format(', '.join(f'"{k}"' for k in missing_keys))) if error_msgs: raise RuntimeError("Error(s) in loading state_dict:\n\t{}".format("\n\t".join(error_msgs))) dtype_override = getattr(model, "manual_cast_dtype", None) for name, param in model.named_parameters(recurse=True): if name not in state_keys: continue meta = state_dict.meta(name) meta_dtype = dtype_override or meta.dtype meta_tensor = torch.empty(meta.shape, dtype=meta_dtype, device="meta") _replace_tensor(model, name, meta_tensor, is_buffer=False, requires_grad=param.requires_grad) for name, buf in model.named_buffers(recurse=True): if buf is None or name not in state_keys: continue meta = state_dict.meta(name) meta_dtype = dtype_override or meta.dtype meta_tensor = torch.empty(meta.shape, dtype=meta_dtype, device="meta") _replace_tensor(model, name, meta_tensor, is_buffer=True, requires_grad=False) register_module_weights(model, state_dict) register_lazy_modules(model, state_dict) attach_disk_weight_hooks(model) return missing_keys, unexpected_keys