import uuid from . import conds from . import model_management from . import patcher_extension from . import utils from .controlnet import ControlBase from .hooks import EnumHookType, EnumWeightTarget, HookGroup, AdditionalModelsHook, create_target_dict, \ TransformerOptionsHook from .model_base import BaseModel from .model_patcher import ModelPatcher from .patcher_extension import merge_nested_dicts def prepare_mask(noise_mask, shape, device): return utils.reshape_mask(noise_mask, shape).to(device) def get_models_from_cond(cond, model_type): models = [] for c in cond: if model_type in c: if isinstance(c[model_type], list): models += c[model_type] else: models += [c[model_type]] return models def get_hooks_from_cond(cond, full_hooks: HookGroup): # get hooks from conds, and collect cnets so they can be checked for extra_hooks cnets: list[ControlBase] = [] for c in cond: if 'hooks' in c: for hook in c['hooks'].hooks: full_hooks.add(hook) if 'control' in c: cnets.append(c['control']) def get_extra_hooks_from_cnet(cnet: ControlBase, _list: list): if cnet.extra_hooks is not None: _list.append(cnet.extra_hooks) if cnet.previous_controlnet is None: return _list return get_extra_hooks_from_cnet(cnet.previous_controlnet, _list) hooks_list = [] cnets_s = set(cnets) for base_cnet in cnets_s: get_extra_hooks_from_cnet(base_cnet, hooks_list) extra_hooks = HookGroup.combine_all_hooks(hooks_list) if extra_hooks is not None: for hook in extra_hooks.hooks: full_hooks.add(hook) return full_hooks def convert_cond(cond): out = [] for c in cond: temp = c[1].copy() model_conds = temp.get("model_conds", {}) if c[0] is not None: model_conds["c_crossattn"] = conds.CONDCrossAttn(c[0]) # TODO: remove temp["cross_attn"] = c[0] temp["model_conds"] = model_conds temp["uuid"] = uuid.uuid4() out.append(temp) return out def get_additional_models(conds, dtype): """loads additional models in conditioning""" cnets: list[ControlBase] = [] gligen = [] add_models = [] for k in conds: cnets += get_models_from_cond(conds[k], "control") gligen += get_models_from_cond(conds[k], "gligen") add_models += get_models_from_cond(conds[k], "additional_models") control_nets = set(cnets) inference_memory = 0 control_models = [] for m in control_nets: control_models += m.get_models() inference_memory += m.inference_memory_requirements(dtype) gligen = [x[1] for x in gligen] models = control_models + gligen + add_models return models, inference_memory def get_additional_models_from_model_options(model_options: dict[str] = None): """loads additional models from registered AddModels hooks""" models = [] if model_options is not None and "registered_hooks" in model_options: registered: HookGroup = model_options["registered_hooks"] for hook in registered.get_type(EnumHookType.AdditionalModels): hook: AdditionalModelsHook models.extend(hook.models) return models def cleanup_additional_models(models): """cleanup additional models that were loaded""" for m in models: if hasattr(m, 'cleanup'): m.cleanup() def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None): real_model: BaseModel = None models, inference_memory = get_additional_models(conds, model.model_dtype()) models += get_additional_models_from_model_options(model_options) models += model.get_nested_additional_models() # TODO: does this require inference_memory update? memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required) real_model = model.model return real_model, conds, models def cleanup_models(conds, models): cleanup_additional_models(models) control_cleanup = [] for k in conds: control_cleanup += get_models_from_cond(conds[k], "control") cleanup_additional_models(set(control_cleanup)) def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict): ''' Registers hooks from conds. ''' # check for hooks in conds - if not registered, see if can be applied hooks = HookGroup() for k in conds: get_hooks_from_cond(conds[k], hooks) # add wrappers and callbacks from ModelPatcher to transformer_options model_options["transformer_options"]["wrappers"] = patcher_extension.copy_nested_dicts(model.wrappers) model_options["transformer_options"]["callbacks"] = patcher_extension.copy_nested_dicts(model.callbacks) # begin registering hooks registered = HookGroup() target_dict = create_target_dict(EnumWeightTarget.Model) # handle all TransformerOptionsHooks for hook in hooks.get_type(EnumHookType.TransformerOptions): hook: TransformerOptionsHook hook.add_hook_patches(model, model_options, target_dict, registered) # handle all AddModelsHooks for hook in hooks.get_type(EnumHookType.AdditionalModels): hook: AdditionalModelsHook hook.add_hook_patches(model, model_options, target_dict, registered) # handle all WeightHooks by registering on ModelPatcher model.register_all_hook_patches(hooks, target_dict, model_options, registered) # add registered_hooks onto model_options for further reference if len(registered) > 0: model_options["registered_hooks"] = registered # merge original wrappers and callbacks with hooked wrappers and callbacks to_load_options: dict[str] = model_options.setdefault("to_load_options", {}) for wc_name in ["wrappers", "callbacks"]: merge_nested_dicts(to_load_options.setdefault(wc_name, {}), model_options["transformer_options"][wc_name], copy_dict1=False) return to_load_options