import node_helpers import comfy.utils import comfy.conds import math import torch import logging from typing import Optional from typing_extensions import override from comfy_api.latest import ComfyExtension, io class TextEncodeQwenImageEdit(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="TextEncodeQwenImageEdit", category="advanced/conditioning", inputs=[ io.Clip.Input("clip"), io.String.Input("prompt", multiline=True, dynamic_prompts=True), io.Vae.Input("vae", optional=True), io.Image.Input("image", optional=True), ], outputs=[ io.Conditioning.Output(), ], ) @classmethod def execute(cls, clip, prompt, vae=None, image=None) -> io.NodeOutput: ref_latent = None if image is None: images = [] else: samples = image.movedim(-1, 1) total = int(1024 * 1024) scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) width = round(samples.shape[3] * scale_by) height = round(samples.shape[2] * scale_by) s = comfy.utils.common_upscale(samples, width, height, "area", "disabled") image = s.movedim(1, -1) images = [image[:, :, :, :3]] if vae is not None: ref_latent = vae.encode(image[:, :, :, :3]) tokens = clip.tokenize(prompt, images=images) conditioning = clip.encode_from_tokens_scheduled(tokens) if ref_latent is not None: conditioning = node_helpers.conditioning_set_values(conditioning, {"reference_latents": [ref_latent]}, append=True) return io.NodeOutput(conditioning) class TextEncodeQwenImageEditPlus(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="TextEncodeQwenImageEditPlus", category="advanced/conditioning", inputs=[ io.Clip.Input("clip"), io.String.Input("prompt", multiline=True, dynamic_prompts=True), io.Vae.Input("vae", optional=True), io.Image.Input("image1", optional=True), io.Image.Input("image2", optional=True), io.Image.Input("image3", optional=True), ], outputs=[ io.Conditioning.Output(), ], ) @classmethod def execute(cls, clip, prompt, vae=None, image1=None, image2=None, image3=None) -> io.NodeOutput: ref_latents = [] images = [image1, image2, image3] images_vl = [] llama_template = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n" image_prompt = "" for i, image in enumerate(images): if image is not None: samples = image.movedim(-1, 1) total = int(384 * 384) scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) width = round(samples.shape[3] * scale_by) height = round(samples.shape[2] * scale_by) s = comfy.utils.common_upscale(samples, width, height, "area", "disabled") images_vl.append(s.movedim(1, -1)) if vae is not None: total = int(1024 * 1024) scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) width = round(samples.shape[3] * scale_by / 8.0) * 8 height = round(samples.shape[2] * scale_by / 8.0) * 8 s = comfy.utils.common_upscale(samples, width, height, "area", "disabled") ref_latents.append(vae.encode(s.movedim(1, -1)[:, :, :, :3])) image_prompt += "Picture {}: <|vision_start|><|image_pad|><|vision_end|>".format(i + 1) tokens = clip.tokenize(image_prompt + prompt, images=images_vl, llama_template=llama_template) conditioning = clip.encode_from_tokens_scheduled(tokens) if len(ref_latents) > 0: conditioning = node_helpers.conditioning_set_values(conditioning, {"reference_latents": ref_latents}, append=True) return io.NodeOutput(conditioning) class TextEncodeQwenImageEliGen(io.ComfyNode): """ Entity-Level Image Generation (EliGen) conditioning node for Qwen Image model. Allows specifying different prompts for different spatial regions using masks. Each entity (mask + prompt pair) will only influence its masked region through spatial attention masking. Features: - Supports up to 8 entities per generation - Spatial attention masks prevent cross-entity contamination - Separate RoPE embeddings per entity (research-accurate) - Falls back to standard generation if no entities provided Usage: 1. Create spatial masks using LoadImageMask (white=entity, black=background) 2. Use 'red', 'green', or 'blue' channel (NOT 'alpha' - it gets inverted) 3. Provide entity-specific prompts for each masked region Based on DiffSynth Studio: https://github.com/modelscope/DiffSynth-Studio """ # Qwen Image model uses 2x2 patches on latents (which are 8x downsampled from pixels) PATCH_SIZE = 2 @classmethod def define_schema(cls): return io.Schema( node_id="TextEncodeQwenImageEliGen", category="advanced/conditioning", inputs=[ io.Clip.Input("clip"), io.Conditioning.Input("global_conditioning"), io.Latent.Input("latent"), io.Mask.Input("entity_mask_1", optional=True), io.String.Input("entity_prompt_1", multiline=True, dynamic_prompts=True, default=""), io.Mask.Input("entity_mask_2", optional=True), io.String.Input("entity_prompt_2", multiline=True, dynamic_prompts=True, default=""), io.Mask.Input("entity_mask_3", optional=True), io.String.Input("entity_prompt_3", multiline=True, dynamic_prompts=True, default=""), io.Mask.Input("entity_mask_4", optional=True), io.String.Input("entity_prompt_4", multiline=True, dynamic_prompts=True, default=""), io.Mask.Input("entity_mask_5", optional=True), io.String.Input("entity_prompt_5", multiline=True, dynamic_prompts=True, default=""), io.Mask.Input("entity_mask_6", optional=True), io.String.Input("entity_prompt_6", multiline=True, dynamic_prompts=True, default=""), io.Mask.Input("entity_mask_7", optional=True), io.String.Input("entity_prompt_7", multiline=True, dynamic_prompts=True, default=""), io.Mask.Input("entity_mask_8", optional=True), io.String.Input("entity_prompt_8", multiline=True, dynamic_prompts=True, default=""), ], outputs=[ io.Conditioning.Output(), ], ) @classmethod def execute( cls, clip, global_conditioning, latent, entity_prompt_1: str = "", entity_mask_1: Optional[torch.Tensor] = None, entity_prompt_2: str = "", entity_mask_2: Optional[torch.Tensor] = None, entity_prompt_3: str = "", entity_mask_3: Optional[torch.Tensor] = None, entity_prompt_4: str = "", entity_mask_4: Optional[torch.Tensor] = None, entity_prompt_5: str = "", entity_mask_5: Optional[torch.Tensor] = None, entity_prompt_6: str = "", entity_mask_6: Optional[torch.Tensor] = None, entity_prompt_7: str = "", entity_mask_7: Optional[torch.Tensor] = None, entity_prompt_8: str = "", entity_mask_8: Optional[torch.Tensor] = None ) -> io.NodeOutput: # Extract dimensions from latent tensor # latent["samples"] shape: [batch, channels, latent_h, latent_w] latent_samples = latent["samples"] unpadded_latent_height = latent_samples.shape[2] # Unpadded latent space unpadded_latent_width = latent_samples.shape[3] # Unpadded latent space # Calculate padded dimensions (same logic as model's pad_to_patch_size with patch_size=2) # The model pads latents to be multiples of PATCH_SIZE pad_h = (cls.PATCH_SIZE - unpadded_latent_height % cls.PATCH_SIZE) % cls.PATCH_SIZE pad_w = (cls.PATCH_SIZE - unpadded_latent_width % cls.PATCH_SIZE) % cls.PATCH_SIZE latent_height = unpadded_latent_height + pad_h # Padded latent dimensions latent_width = unpadded_latent_width + pad_w # Padded latent dimensions height = latent_height * 8 # Convert to pixel space for logging width = latent_width * 8 if pad_h > 0 or pad_w > 0: logging.debug(f"[EliGen] Latent padding detected: {unpadded_latent_height}x{unpadded_latent_width} → {latent_height}x{latent_width}") logging.debug(f"[EliGen] Target generation dimensions: {height}x{width} pixels ({latent_height}x{latent_width} latent)") # Collect entity prompts and masks entity_prompts = [entity_prompt_1, entity_prompt_2, entity_prompt_3, entity_prompt_4, entity_prompt_5, entity_prompt_6, entity_prompt_7, entity_prompt_8] entity_masks_raw = [entity_mask_1, entity_mask_2, entity_mask_3, entity_mask_4, entity_mask_5, entity_mask_6, entity_mask_7, entity_mask_8] # Filter out entities with empty prompts or missing masks valid_entities = [] for prompt, mask in zip(entity_prompts, entity_masks_raw): if prompt.strip() and mask is not None: valid_entities.append((prompt, mask)) # Log warning if some entities were skipped total_prompts_provided = len([p for p in entity_prompts if p.strip()]) if len(valid_entities) < total_prompts_provided: logging.warning(f"[EliGen] Only {len(valid_entities)} of {total_prompts_provided} entity prompts have valid masks") # If no valid entities, return standard conditioning if len(valid_entities) == 0: return io.NodeOutput(global_conditioning) # Encode each entity prompt separately entity_prompt_emb_list = [] entity_prompt_emb_mask_list = [] for entity_prompt, _ in valid_entities: # mask not used at this point entity_tokens = clip.tokenize(entity_prompt) entity_cond_dict = clip.encode_from_tokens(entity_tokens, return_pooled=True, return_dict=True) entity_prompt_emb = entity_cond_dict["cond"] entity_prompt_emb_mask = entity_cond_dict.get("attention_mask", None) # If no attention mask in extra_dict, create one (all True) if entity_prompt_emb_mask is None: seq_len = entity_prompt_emb.shape[1] entity_prompt_emb_mask = torch.ones((entity_prompt_emb.shape[0], seq_len), dtype=torch.bool, device=entity_prompt_emb.device) entity_prompt_emb_list.append(entity_prompt_emb) entity_prompt_emb_mask_list.append(entity_prompt_emb_mask) # Process spatial masks to latent space processed_entity_masks = [] for i, (_, mask) in enumerate(valid_entities): # MASK type format: [batch, height, width] (no channel dimension) # This is different from IMAGE type which is [batch, height, width, channels] mask_tensor = mask # Validate mask dtype if mask_tensor.dtype not in [torch.float32, torch.float16, torch.bfloat16]: raise TypeError( f"Entity {i+1} mask has invalid dtype {mask_tensor.dtype}. " f"Expected float32, float16, or bfloat16. " f"Ensure you're using LoadImageMask node, not LoadImage." ) # Log original mask statistics logging.debug( f"[EliGen] Entity {i+1} input mask: shape={mask_tensor.shape}, " f"dtype={mask_tensor.dtype}, min={mask_tensor.min():.4f}, max={mask_tensor.max():.4f}" ) # Check for all-zero masks (common error when wrong channel selected) if mask_tensor.max() == 0.0: raise ValueError( f"Entity {i+1} mask is all zeros! This usually means:\n" f" 1. Wrong channel selected in LoadImageMask (use 'red', 'green', or 'blue', NOT 'alpha')\n" f" 2. Your mask image is completely black\n" f" 3. The mask file failed to load" ) # Check for constant masks (no variation) if mask_tensor.min() == mask_tensor.max() and mask_tensor.max() > 0: logging.warning( f"[EliGen] Entity {i+1} mask has no variation (all pixels = {mask_tensor.min():.4f}). " f"This entity will affect the entire image." ) # Extract original dimensions original_shape = mask_tensor.shape if len(original_shape) == 2: # [height, width] - single mask without batch orig_h, orig_w = original_shape[0], original_shape[1] # Add batch dimension: [1, height, width] mask_tensor = mask_tensor.unsqueeze(0) elif len(original_shape) == 3: # [batch, height, width] - standard MASK format orig_h, orig_w = original_shape[1], original_shape[2] else: raise ValueError( f"Entity {i+1} has unexpected mask shape: {original_shape}. " f"Expected [H, W] or [B, H, W]. Got {len(original_shape)} dimensions." ) # Log size mismatch if mask doesn't match expected latent dimensions expected_h, expected_w = latent_height * 8, latent_width * 8 if orig_h != expected_h or orig_w != expected_w: logging.info( f"[EliGen] Entity {i+1} mask size mismatch: {orig_h}x{orig_w} vs expected {expected_h}x{expected_w}. " f"Will resize to {latent_height}x{latent_width} latent space." ) else: logging.debug(f"[EliGen] Entity {i+1} mask: {orig_h}x{orig_w} → will resize to {latent_height}x{latent_width} latent") # Convert MASK format [batch, height, width] to [batch, 1, height, width] for common_upscale # common_upscale expects [batch, channels, height, width] mask_tensor = mask_tensor.unsqueeze(1) # Add channel dimension: [batch, 1, height, width] # Resize to latent space dimensions using nearest neighbor resized_mask = comfy.utils.common_upscale( mask_tensor, latent_width, latent_height, upscale_method="nearest-exact", crop="disabled" ) # Threshold to binary (0 or 1) # Use > 0 instead of > 0.5 to preserve edge pixels from nearest-neighbor downsampling resized_mask = (resized_mask > 0).float() # Log how many pixels are active in the mask active_pixels = (resized_mask > 0).sum().item() total_pixels = resized_mask.numel() coverage_pct = 100 * active_pixels / total_pixels if total_pixels > 0 else 0 if active_pixels == 0: raise ValueError( f"Entity {i+1} mask has no active pixels after resizing to latent space! " f"Original mask may have been too small or all black." ) logging.debug( f"[EliGen] Entity {i+1} mask coverage: {active_pixels}/{total_pixels} pixels ({coverage_pct:.1f}%)" ) processed_entity_masks.append(resized_mask) # Stack masks: [batch, num_entities, 1, latent_height, latent_width] # Each item in processed_entity_masks has shape [1, 1, H, W] (batch=1, channel=1) # We need to remove batch dim, stack, then add it back processed_entity_masks_no_batch = [m.squeeze(0) for m in processed_entity_masks] # Each: [1, H, W] entity_masks_tensor = torch.stack(processed_entity_masks_no_batch, dim=0) # [num_entities, 1, H, W] entity_masks_tensor = entity_masks_tensor.unsqueeze(0) # [1, num_entities, 1, H, W] logging.debug( f"[EliGen] Stacked {len(valid_entities)} entity masks into tensor: " f"shape={entity_masks_tensor.shape} (expected: [1, {len(valid_entities)}, 1, {latent_height}, {latent_width}])" ) # Extract global prompt embedding and mask from conditioning # Conditioning format: [[cond_tensor, extra_dict]] global_prompt_emb = global_conditioning[0][0] # The embedding tensor directly global_extra_dict = global_conditioning[0][1] # Metadata dict global_prompt_emb_mask = global_extra_dict.get("attention_mask", None) # If no attention mask, create one (all True) if global_prompt_emb_mask is None: global_prompt_emb_mask = torch.ones((global_prompt_emb.shape[0], global_prompt_emb.shape[1]), dtype=torch.bool, device=global_prompt_emb.device) # Attach entity data to conditioning using conditioning_set_values entity_data = { "entity_prompt_emb": entity_prompt_emb_list, "entity_prompt_emb_mask": entity_prompt_emb_mask_list, "entity_masks": entity_masks_tensor, } conditioning_with_entities = node_helpers.conditioning_set_values( global_conditioning, entity_data, append=True ) return io.NodeOutput(conditioning_with_entities) class QwenExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ TextEncodeQwenImageEdit, TextEncodeQwenImageEditPlus, TextEncodeQwenImageEliGen, ] async def comfy_entrypoint() -> QwenExtension: return QwenExtension()