config: network: # Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all) # Type: str listen: 127.0.0.1 # Set the listen port. # Type: int port: 8188 # Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'. # Type: str enable_cors_header: files: # Extra paths to scan for model files. extra_model_paths: a1111: hypernetworks: models/hypernetworks base_path: path/to/stable-diffusion-webui/ embeddings: embeddings controlnet: models/ControlNet configs: models/Stable-diffusion loras: models/Lora vae: models/VAE checkpoints: models/Stable-diffusion upscale_models: | models/ESRGAN models/SwinIR # Set the ComfyUI output directory. Leave empty to use the default. # Type: str output_directory: behavior: # Automatically launch ComfyUI in the default browser. # Type: bool auto_launch: false # Don't print server output. # Type: bool dont_print_server: false # Quick test for CI. # Type: bool quick_test_for_ci: false # Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup). # Type: bool windows_standalone_build: false pytorch: # Set the id of the cuda device this instance will use, or leave empty to autodetect. # Type: int cuda_device: # Disable upcasting of attention. Can boost speed but increase the chances of black images. # Type: bool dont_upcast_attention: false # Force fp32 (If this makes your GPU work better please report it). # Type: bool force_fp32: false # Use torch-directml. # Type: int directml: # Type of cross attention to use # Choices: # - (empty): Don't use cross-attention. # - split: Use the split cross attention optimization instead of the sub-quadratic one. Ignored when xformers is used. # - pytorch: Use the new pytorch 2.0 cross attention function. cross_attention: # Disable xformers. # Type: bool disable_xformers: false # Determines how VRAM is used. # Choices: # - (empty): Autodetect the optional VRAM settings based on hardware. # - highvram: By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory. # - normalvram: Used to force normal vram use if lowvram gets automatically enabled. # - lowvram: Split the unet in parts to use less vram. # - novram: When lowvram isn't enough. # - cpu: To use the CPU for everything (slow). vram: