import importlib.resources import json import logging from importlib.abc import Traversable from typing import Any, AsyncGenerator import pytest from comfy.api.components.schema.prompt import Prompt from comfy.client.embedded_comfy_client import Comfy from comfy.model_downloader import add_known_models, KNOWN_LORAS from comfy.model_downloader_types import CivitFile, HuggingFile from comfy_extras.nodes.nodes_audio import TorchAudioNotFoundError from . import workflows logger = logging.getLogger(__name__) @pytest.fixture(scope="function", autouse=False) async def client(tmp_path_factory) -> AsyncGenerator[Any, Any]: async with Comfy() as client: yield client def _prepare_for_workflows() -> dict[str, Traversable]: add_known_models("loras", KNOWN_LORAS, CivitFile(13941, 16576, "epi_noiseoffset2.safetensors")) add_known_models("checkpoints", HuggingFile("autismanon/modeldump", "cardosAnime_v20.safetensors")) return {f.name: f for f in importlib.resources.files(workflows).iterdir() if f.is_file() and f.name.endswith(".json")} @pytest.mark.asyncio @pytest.mark.parametrize("workflow_name, workflow_file", _prepare_for_workflows().items()) async def test_workflow(workflow_name: str, workflow_file: Traversable, has_gpu: bool, client: Comfy): if not has_gpu: pytest.skip("requires gpu") workflow = json.loads(workflow_file.read_text(encoding="utf8")) prompt = Prompt.validate(workflow) # todo: add all the models we want to test a bit m2ore elegantly outputs = {} try: outputs = await client.queue_prompt(prompt) except TorchAudioNotFoundError: pytest.skip("requires torchaudio") if any(v.class_type == "SaveImage" for v in prompt.values()): save_image_node_id = next(key for key in prompt if prompt[key].class_type == "SaveImage") assert outputs[save_image_node_id]["images"][0]["abs_path"] is not None elif any(v.class_type == "SaveAudio" for v in prompt.values()): save_audio_node_id = next(key for key in prompt if prompt[key].class_type == "SaveAudio") assert outputs[save_audio_node_id]["audio"][0]["filename"] is not None elif any(v.class_type == "SaveAnimatedWEBP" for v in prompt.values()): save_video_node_id = next(key for key in prompt if prompt[key].class_type == "SaveAnimatedWEBP") assert outputs[save_video_node_id]["images"][0]["filename"] is not None elif any(v.class_type == "PreviewString" for v in prompt.values()): save_image_node_id = next(key for key in prompt if prompt[key].class_type == "PreviewString") output_str = outputs[save_image_node_id]["string"][0] assert output_str is not None assert len(output_str) > 0 else: assert len(outputs) > 0 logger.warning(f"test {workflow_name} did not have a node that could be checked for output")