""" This file is part of ComfyUI. Copyright (C) 2024 Comfy This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ from __future__ import annotations from .cmd.main_pre import tracer import gc import logging import platform import sys import importlib.util import warnings import weakref from enum import Enum from threading import RLock from typing import List, Sequence, Final, Optional import psutil import torch from opentelemetry.trace import get_current_span from . import interruption from .cli_args import args, PerformanceFeature from .component_model.deprecation import _deprecate_method from .model_management_types import ModelManageable model_management_lock = RLock() # https://github.com/sayakpaul/diffusers-torchao/blob/bade7a6abb1cab9ef44782e6bcfab76d0237ae1f/inference/benchmark_image.py#L3 # This setting optimizes performance on NVIDIA GPUs with Ampere architecture (e.g., A100, RTX 30 series) or newer. torch.set_float32_matmul_precision("high") logger = logging.getLogger(__name__) class VRAMState(Enum): DISABLED = 0 # No vram present: no need to move models to vram NO_VRAM = 1 # Very low vram: enable all the options to save vram LOW_VRAM = 2 NORMAL_VRAM = 3 HIGH_VRAM = 4 SHARED = 5 # No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. class CPUState(Enum): GPU = 0 CPU = 1 MPS = 2 # Determine VRAM State vram_state = VRAMState.NORMAL_VRAM set_vram_to = VRAMState.NORMAL_VRAM cpu_state = CPUState.GPU total_vram = 0 def get_supported_float8_types(): float8_types = [] try: float8_types.append(torch.float8_e4m3fn) except: pass try: float8_types.append(torch.float8_e4m3fnuz) except: pass try: float8_types.append(torch.float8_e5m2) except: pass try: float8_types.append(torch.float8_e5m2fnuz) except: pass try: float8_types.append(torch.float8_e8m0fnu) except: pass return float8_types FLOAT8_TYPES = get_supported_float8_types() xpu_available = False torch_version = "" try: torch_version = torch.version.__version__ temp = torch_version.split(".") torch_version_numeric = (int(temp[0]), int(temp[1])) except: pass lowvram_available = True if args.deterministic: logger.debug("Using deterministic algorithms for pytorch") torch.use_deterministic_algorithms(True, warn_only=True) directml_device = None if args.directml is not None: logger.warning("WARNING: torch-directml barely works, is very slow, has not been updated in over 1 year and might be removed soon, please don't use it, there are better options.") import torch_directml # pylint: disable=import-error device_index = args.directml if device_index < 0: directml_device = torch_directml.device() else: directml_device = torch_directml.device(device_index) logger.debug("Using directml with device: {}".format(torch_directml.device_name(device_index))) # torch_directml.disable_tiled_resources(True) lowvram_available = False # TODO: need to find a way to get free memory in directml before this can be enabled by default. try: import intel_extension_for_pytorch as ipex # pylint: disable=import-error, noqa: F401 except: pass try: _ = torch.xpu.device_count() xpu_available = torch.xpu.is_available() except: xpu_available = False try: if torch.backends.mps.is_available(): cpu_state = CPUState.MPS import torch.mps except: pass try: import torch_npu # pylint: disable=import-error, noqa: F401 _ = torch.npu.device_count() npu_available = torch.npu.is_available() except: npu_available = False try: import torch_mlu # pylint: disable=import-error, noqa: F401 _ = torch.mlu.device_count() mlu_available = torch.mlu.is_available() except: mlu_available = False try: ixuca_available = hasattr(torch, "corex") except: ixuca_available = False if args.cpu: cpu_state = CPUState.CPU def is_intel_xpu(): global cpu_state global xpu_available if cpu_state == CPUState.GPU: if xpu_available: return True return False def is_ascend_npu(): global npu_available if npu_available: return True return False def is_mlu(): global mlu_available if mlu_available: return True return False def is_ixuca(): global ixuca_available if ixuca_available: return True return False def get_torch_device(): global directml_device global cpu_state if directml_device: return directml_device if cpu_state == CPUState.MPS: return torch.device("mps") if cpu_state == CPUState.CPU: return torch.device("cpu") else: if is_intel_xpu(): return torch.device("xpu", torch.xpu.current_device()) elif is_ascend_npu(): return torch.device("npu", torch.npu.current_device()) elif is_mlu(): return torch.device("mlu", torch.mlu.current_device()) else: try: return torch.device(f"cuda:{torch.cuda.current_device()}") except: warnings.warn("torch.cuda.current_device() did not return a device, returning a CPU torch device") return torch.device("cpu") def get_total_memory(dev=None, torch_total_too=False): global directml_device if dev is None: dev = get_torch_device() mem_total_torch = 0 if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): mem_total = psutil.virtual_memory().total mem_total_torch = mem_total else: if directml_device: mem_total = 1024 * 1024 * 1024 # TODO mem_total_torch = mem_total elif is_intel_xpu(): stats = torch.xpu.memory_stats(dev) # pylint: disable=no-member mem_reserved = stats['reserved_bytes.all.current'] mem_total_xpu = torch.xpu.get_device_properties(dev).total_memory mem_total_torch = mem_reserved mem_total = mem_total_xpu elif is_ascend_npu(): stats = torch.npu.memory_stats(dev) mem_reserved = stats['reserved_bytes.all.current'] _, mem_total_npu = torch.npu.mem_get_info(dev) mem_total_torch = mem_reserved mem_total = mem_total_npu elif is_mlu(): stats = torch.mlu.memory_stats(dev) mem_reserved = stats['reserved_bytes.all.current'] _, mem_total_mlu = torch.mlu.mem_get_info(dev) mem_total_torch = mem_reserved mem_total = mem_total_mlu else: stats = torch.cuda.memory_stats(dev) mem_reserved = stats['reserved_bytes.all.current'] _, mem_total_cuda = torch.cuda.mem_get_info(dev) mem_total_torch = mem_reserved mem_total = mem_total_cuda if torch_total_too: return mem_total, mem_total_torch else: return mem_total def mac_version(): try: return tuple(int(n) for n in platform.mac_ver()[0].split(".")) except: return None # we're required to call get_device_name early on to initialize the methods get_total_memory will call if torch.cuda.is_available() and hasattr(torch.version, "hip") and torch.version.hip is not None: logger.debug(f"Detected HIP device: {torch.cuda.get_device_name(torch.cuda.current_device())}") total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) total_ram = psutil.virtual_memory().total / (1024 * 1024) logger.debug("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) try: logger.debug("pytorch version: {}".format(torch_version)) mac_ver = mac_version() if mac_ver is not None: logger.debug("Mac Version {}".format(mac_ver)) except: pass class _ComfyOutOfMemoryException(RuntimeError): pass try: OOM_EXCEPTION = torch.cuda.OutOfMemoryError except: OOM_EXCEPTION = _ComfyOutOfMemoryException XFORMERS_VERSION = "" XFORMERS_ENABLED_VAE = True if args.disable_xformers: XFORMERS_IS_AVAILABLE = False else: try: import xformers # pylint: disable=import-error import xformers.ops # pylint: disable=import-error XFORMERS_IS_AVAILABLE = True try: XFORMERS_IS_AVAILABLE = xformers._has_cpp_library except: pass try: XFORMERS_VERSION = xformers.version.__version__ logger.debug("xformers version: {}".format(XFORMERS_VERSION)) if XFORMERS_VERSION.startswith("0.0.18"): logger.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") logger.warning("Please downgrade or upgrade xformers to a different version.\n") XFORMERS_ENABLED_VAE = False except: pass except: XFORMERS_IS_AVAILABLE = False def is_nvidia(): global cpu_state if cpu_state == CPUState.GPU: if torch.version.cuda: return True return False def is_amd(): global cpu_state if cpu_state == CPUState.GPU: if torch.version.hip: return True return False def amd_min_version(device=None, min_rdna_version=0): if not is_amd(): return False if is_device_cpu(device): return False arch = torch.cuda.get_device_properties(device).gcnArchName if arch.startswith('gfx') and len(arch) == 7: try: cmp_rdna_version = int(arch[4]) + 2 except: cmp_rdna_version = 0 if cmp_rdna_version >= min_rdna_version: return True return False MIN_WEIGHT_MEMORY_RATIO = 0.4 if is_nvidia(): MIN_WEIGHT_MEMORY_RATIO = 0.0 ENABLE_PYTORCH_ATTENTION = False if args.use_pytorch_cross_attention: ENABLE_PYTORCH_ATTENTION = True XFORMERS_IS_AVAILABLE = False try: if is_nvidia() or is_amd(): if torch_version_numeric[0] >= 2: if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: ENABLE_PYTORCH_ATTENTION = True if is_intel_xpu() or is_ascend_npu() or is_mlu() or is_ixuca(): if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: ENABLE_PYTORCH_ATTENTION = True except: pass SUPPORT_FP8_OPS = args.supports_fp8_compute AMD_RDNA2_AND_OLDER_ARCH = ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"] try: if is_amd(): arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName if not (any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH)): torch.backends.cudnn.enabled = False # Seems to improve things a lot on AMD logger.info("Set: torch.backends.cudnn.enabled = False for better AMD performance.") try: rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2])) except: rocm_version = (6, -1) logger.debug("AMD arch: {}".format(arch)) logger.debug("ROCm version: {}".format(rocm_version)) if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: if importlib.util.find_spec('triton') is not None: # AMD efficient attention implementation depends on triton. TODO: better way of detecting if it's compiled in or not. if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1102", "gfx1151"]): # TODO: more arches, TODO: gfx950 ENABLE_PYTORCH_ATTENTION = True if rocm_version >= (7, 0): if any((a in arch) for a in ["gfx1201"]): ENABLE_PYTORCH_ATTENTION = True if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4): if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx950"]): # TODO: more arches, "gfx942" gives error on pytorch nightly 2.10 1013 rocm7.0 SUPPORT_FP8_OPS = True except: pass if ENABLE_PYTORCH_ATTENTION: torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_mem_efficient_sdp(True) PRIORITIZE_FP16 = False # TODO: remove and replace with something that shows exactly which dtype is faster than the other try: if (is_nvidia() or is_amd()) and PerformanceFeature.Fp16Accumulation in args.fast: torch.backends.cuda.matmul.allow_fp16_accumulation = True PRIORITIZE_FP16 = True # TODO: limit to cards where it actually boosts performance logger.info("Enabled fp16 accumulation.") except: pass if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast: torch.backends.cudnn.benchmark = True try: if torch_version_numeric >= (2, 5): torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True) # pylint: disable=no-member except: logger.warning("Warning, could not set allow_fp16_bf16_reduction_math_sdp") if args.lowvram: set_vram_to = VRAMState.LOW_VRAM lowvram_available = True elif args.novram: set_vram_to = VRAMState.NO_VRAM elif args.highvram or args.gpu_only: vram_state = VRAMState.HIGH_VRAM FORCE_FP32 = False FORCE_FP16 = False FORCE_BF16 = False if args.force_fp32: logger.info("Forcing FP32, if this improves things please report it.") FORCE_FP32 = True if args.force_fp16: logger.debug("Forcing FP16.") FORCE_FP16 = True if args.force_bf16: logger.info("Force BF16") FORCE_BF16 = True if lowvram_available: if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): vram_state = set_vram_to if cpu_state != CPUState.GPU: vram_state = VRAMState.DISABLED if cpu_state == CPUState.MPS: vram_state = VRAMState.SHARED logger.debug(f"Set vram state to: {vram_state.name}") DISABLE_SMART_MEMORY = args.disable_smart_memory if DISABLE_SMART_MEMORY: logger.debug("Disabling smart memory management") def get_torch_device_name(device): if hasattr(device, 'type'): if device.type == "cuda": try: allocator_backend = torch.cuda.get_allocator_backend() except: allocator_backend = "" return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) elif device.type == "xpu": return "{} {}".format(device, torch.xpu.get_device_name(device)) else: return "{}".format(device.type) elif is_intel_xpu(): return "{} {}".format(device, torch.xpu.get_device_name(device)) elif is_ascend_npu(): return "{} {}".format(device, torch.npu.get_device_name(device)) elif is_mlu(): return "{} {}".format(device, torch.mlu.get_device_name(device)) else: return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) try: logger.debug("Device: {}".format(get_torch_device_name(get_torch_device()))) except: logger.warning("Could not pick default device.") current_loaded_models: Final[List["LoadedModel"]] = [] def module_size(module): module_mem = 0 sd = module.state_dict() for k in sd: t = sd[k] module_mem += t.nelement() * t.element_size() return module_mem class LoadedModel: def __init__(self, model: ModelManageable): self._set_model(model) self.device = model.load_device self.real_model = None self.currently_used = True self.model_finalizer = None self._patcher_finalizer = None def _set_model(self, model): self._model = weakref.ref(model) if model.parent is not None: self._parent_model = weakref.ref(model.parent) self._patcher_finalizer = weakref.finalize(model, self._switch_parent) def _switch_parent(self): model = self._parent_model() if model is not None: self._set_model(model) @property def model(self) -> ModelManageable: return self._model() def model_memory(self): return self.model.model_size() def model_loaded_memory(self): return self.model.loaded_size() def model_offloaded_memory(self): return self.model.model_size() - self.model.loaded_size() def model_memory_required(self, device): if device == self.model.current_loaded_device(): return self.model_offloaded_memory() else: return self.model_memory() def model_load(self, lowvram_model_memory=0, force_patch_weights=False): self.model.model_patches_to(self.device) self.model.model_patches_to(self.model.model_dtype()) # if self.model.loaded_size() > 0: use_more_vram = lowvram_model_memory if use_more_vram == 0: use_more_vram = 1e32 self.model_use_more_vram(use_more_vram, force_patch_weights=force_patch_weights) real_model = self.model.model if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and real_model is not None: with torch.no_grad(): real_model = ipex.optimize(real_model.eval(), inplace=True, graph_mode=True, concat_linear=True) self.real_model = weakref.ref(real_model) self.model_finalizer = weakref.finalize(real_model, cleanup_models) return real_model def should_reload_model(self, force_patch_weights=False): if force_patch_weights and self.model.lowvram_patch_counter() > 0: return True return False def model_unload(self, memory_to_free=None, unpatch_weights=True): if memory_to_free is not None: if memory_to_free < self.model.loaded_size(): freed = self.model.partially_unload(self.model.offload_device, memory_to_free) if freed >= memory_to_free: return False self.model.detach(unpatch_weights) self.model_finalizer.detach() self.model_finalizer = None self.real_model = None return True def model_use_more_vram(self, extra_memory, force_patch_weights=False): return self.model.partially_load(self.device, extra_memory, force_patch_weights=force_patch_weights) def __eq__(self, other): return self.model is other.model def __str__(self): if self.model is not None: return f"" else: return f"" def __del__(self): if self._patcher_finalizer is not None: self._patcher_finalizer.detach() def is_dead(self): return self.real_model() is not None and self.model is None def use_more_memory(extra_memory, loaded_models, device): for m in loaded_models: if m.device == device: extra_memory -= m.model_use_more_vram(extra_memory) if extra_memory <= 0: break def offloaded_memory(loaded_models, device): offloaded_mem = 0 for m in loaded_models: if m.device == device: offloaded_mem += m.model_offloaded_memory() return offloaded_mem WINDOWS = any(platform.win32_ver()) EXTRA_RESERVED_VRAM = 400 * 1024 * 1024 if WINDOWS: EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 # Windows is higher because of the shared vram issue if total_vram > (15 * 1024): # more extra reserved vram on 16GB+ cards EXTRA_RESERVED_VRAM += 100 * 1024 * 1024 if args.reserve_vram is not None: EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024 logger.debug("Reserving {}MB vram for other applications.".format(EXTRA_RESERVED_VRAM / (1024 * 1024))) def extra_reserved_memory(): return EXTRA_RESERVED_VRAM def minimum_inference_memory(): return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory() def trim_memory() -> bool: """ Trims memory usage, returning reserved memory to the system Only supported on Windows and Linux :return: """ try: if sys.platform.startswith('linux'): import ctypes import ctypes.util libc_path = ctypes.util.find_library('c') if not libc_path: return False libc = ctypes.CDLL(libc_path) if hasattr(libc, 'malloc_trim'): return libc.malloc_trim(0) == 1 else: return False elif sys.platform == 'win32': import ctypes.wintypes kernel32 = ctypes.WinDLL("kernel32") EmptyProcessWorkingSet = kernel32.EmptyProcessWorkingSet EmptyProcessWorkingSet.argtypes = [ctypes.wintypes.HANDLE] EmptyProcessWorkingSet.restype = ctypes.wintypes.BOOL handle = -1 success = EmptyProcessWorkingSet(handle) return bool(success) else: return False except Exception as exc_info: logger.warning("failed to trim", exc_info=exc_info) return False @tracer.start_as_current_span("Free Memory") def free_memory(memory_required, device, keep_loaded=[]) -> List[LoadedModel]: span = get_current_span() span.set_attribute("memory_required", memory_required) with model_management_lock: unloaded_models = _free_memory(memory_required, device, keep_loaded) span.set_attribute("unloaded_models", list(map(str, unloaded_models))) return unloaded_models def _free_memory(memory_required, device, keep_loaded=[]): cleanup_models_gc() unloaded_model = [] can_unload = [] unloaded_models = [] for i in range(len(current_loaded_models) - 1, -1, -1): shift_model = current_loaded_models[i] if shift_model.device == device: if shift_model not in keep_loaded and not shift_model.is_dead(): can_unload.append((-shift_model.model_offloaded_memory(), sys.getrefcount(shift_model.model), shift_model.model_memory(), i)) shift_model.currently_used = False for x in sorted(can_unload): i = x[-1] memory_to_free = None if not DISABLE_SMART_MEMORY: free_mem = get_free_memory(device) if free_mem > memory_required: break memory_to_free = memory_required - free_mem logger.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}") if current_loaded_models[i].model_unload(memory_to_free): unloaded_model.append(i) for i in sorted(unloaded_model, reverse=True): unloaded_models.append(current_loaded_models.pop(i)) if len(unloaded_model) > 0: soft_empty_cache() else: if vram_state != VRAMState.HIGH_VRAM: mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) if mem_free_torch > mem_free_total * 0.25: soft_empty_cache() return unloaded_models @tracer.start_as_current_span("Load Models GPU") def load_models_gpu(models: Sequence[ModelManageable], memory_required: int = 0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False) -> None: span = get_current_span() if memory_required != 0: span.set_attribute("memory_required", memory_required) with model_management_lock: _load_models_gpu(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load) to_load = list(map(str, models)) span.set_attribute("models", to_load) logger.debug(f"Loaded {to_load}") def _load_models_gpu(models: Sequence[ModelManageable], memory_required: int = 0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False) -> None: cleanup_models_gc() global vram_state inference_memory = minimum_inference_memory() extra_mem = max(inference_memory, memory_required + extra_reserved_memory()) if minimum_memory_required is None: minimum_memory_required = extra_mem else: minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory()) models_temp = set() for m in models: models_temp.add(m) for mm in m.model_patches_models(): models_temp.add(mm) models = models_temp models_to_load = [] models_freed = [] for x in models: loaded_model = LoadedModel(x) try: loaded_model_index = current_loaded_models.index(loaded_model) except: loaded_model_index = None if loaded_model_index is not None: loaded = current_loaded_models[loaded_model_index] loaded.currently_used = True models_to_load.append(loaded) else: models_to_load.append(loaded_model) for loaded_model in models_to_load: to_unload = [] for i in range(len(current_loaded_models)): if loaded_model.model.is_clone(current_loaded_models[i].model): to_unload = [i] + to_unload for i in to_unload: model_to_unload = current_loaded_models.pop(i) model_to_unload.model.detach(unpatch_all=False) model_to_unload.model_finalizer.detach() total_memory_required = {} for loaded_model in models_to_load: total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) for device in total_memory_required: if device != torch.device("cpu"): models_freed += free_memory(total_memory_required[device] * 1.1 + extra_mem, device) for device in total_memory_required: if device != torch.device("cpu"): free_mem = get_free_memory(device) if free_mem < minimum_memory_required: models_l = free_memory(minimum_memory_required, device) models_freed += models_l logger.debug("{} models unloaded.".format(len(models_l))) for loaded_model in models_to_load: model = loaded_model.model torch_dev = model.load_device if is_device_cpu(torch_dev): vram_set_state = VRAMState.DISABLED else: vram_set_state = vram_state lowvram_model_memory = 0 if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM) and not force_full_load: loaded_memory = loaded_model.model_loaded_memory() current_free_mem = get_free_memory(torch_dev) + loaded_memory lowvram_model_memory = max(0, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory())) lowvram_model_memory = lowvram_model_memory - loaded_memory if lowvram_model_memory == 0: lowvram_model_memory = 0.1 if vram_set_state == VRAMState.NO_VRAM: lowvram_model_memory = 0.1 loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights) current_loaded_models.insert(0, loaded_model) span = get_current_span() span.set_attribute("models_to_load", list(map(str, models_to_load))) span.set_attribute("models_freed", list(map(str, models_freed))) @_deprecate_method(message="Use load_models_gpu instead", version="0.0.2") def load_model_gpu(model): return load_models_gpu([model]) def loaded_models(only_currently_used=False): with model_management_lock: output = [] for m in current_loaded_models: if only_currently_used: if not m.currently_used: continue output.append(m.model) return output def cleanup_models_gc(): do_gc = False for i in range(len(current_loaded_models)): cur = current_loaded_models[i] if cur.is_dead(): logger.info("Potential memory leak detected with model {}, doing a full garbage collect, for maximum performance avoid circular references in the model code.".format(cur.real_model().__class__.__name__)) do_gc = True break if do_gc: gc.collect() soft_empty_cache() for i in range(len(current_loaded_models)): cur = current_loaded_models[i] if cur.is_dead(): logger.warning("WARNING, memory leak with model {}. Please make sure it is not being referenced from somewhere.".format(cur.real_model().__class__.__name__)) def cleanup_models(): to_delete = [] for i in range(len(current_loaded_models)): if current_loaded_models[i].real_model() is None: to_delete = [i] + to_delete for i in to_delete: x = current_loaded_models.pop(i) del x def dtype_size(dtype): dtype_size = 4 if dtype == torch.float16 or dtype == torch.bfloat16: dtype_size = 2 elif dtype == torch.float32: dtype_size = 4 else: try: dtype_size = dtype.itemsize except: # Old pytorch doesn't have .itemsize pass return dtype_size def unet_offload_device(): if vram_state == VRAMState.HIGH_VRAM: return get_torch_device() else: return torch.device("cpu") def unet_initial_load_device(parameters, dtype): torch_dev = get_torch_device() if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.SHARED: return torch_dev cpu_dev = torch.device("cpu") if DISABLE_SMART_MEMORY or vram_state == VRAMState.NO_VRAM: return cpu_dev model_size = dtype_size(dtype) * parameters mem_dev = get_free_memory(torch_dev) mem_cpu = get_free_memory(cpu_dev) if mem_dev > mem_cpu and model_size < mem_dev: return torch_dev else: return cpu_dev def maximum_vram_for_weights(device=None) -> int: return get_total_memory(device) * 0.88 - minimum_inference_memory() def unet_dtype(device=None, model_params=0, supported_dtypes=(torch.float16, torch.bfloat16, torch.float32), weight_dtype: Optional[torch.dtype] = None): if model_params < 0: model_params = 1000000000000000000000 if args.fp32_unet: return torch.float32 if args.fp64_unet: return torch.float64 if args.bf16_unet: return torch.bfloat16 if args.fp16_unet: return torch.float16 if args.fp8_e4m3fn_unet: return torch.float8_e4m3fn if args.fp8_e5m2_unet: return torch.float8_e5m2 if args.fp8_e8m0fnu_unet: return torch.float8_e8m0fnu fp8_dtype = None if weight_dtype in FLOAT8_TYPES: fp8_dtype = weight_dtype if fp8_dtype is not None: if supports_fp8_compute(device): # if fp8 compute is supported the casting is most likely not expensive return fp8_dtype free_model_memory = maximum_vram_for_weights(device) if model_params * 2 > free_model_memory: return fp8_dtype if PRIORITIZE_FP16 or weight_dtype == torch.float16: if torch.float16 in supported_dtypes and should_use_fp16(device=device, model_params=model_params): return torch.float16 for dt in supported_dtypes: if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params): if torch.float16 in supported_dtypes: return torch.float16 if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params): if torch.bfloat16 in supported_dtypes: return torch.bfloat16 for dt in supported_dtypes: if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params, manual_cast=True): if torch.float16 in supported_dtypes: return torch.float16 if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params, manual_cast=True): if torch.bfloat16 in supported_dtypes: return torch.bfloat16 return torch.float32 # None means no manual cast def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=(torch.float16, torch.bfloat16, torch.float32)): if weight_dtype == torch.float32 or weight_dtype == torch.float64: return None fp16_supported = should_use_fp16(inference_device, prioritize_performance=False) if fp16_supported and weight_dtype == torch.float16: return None bf16_supported = should_use_bf16(inference_device) if bf16_supported and weight_dtype == torch.bfloat16: return None fp16_supported = should_use_fp16(inference_device, prioritize_performance=True) if PRIORITIZE_FP16 and fp16_supported and torch.float16 in supported_dtypes: return torch.float16 for dt in supported_dtypes: if dt == torch.float16 and fp16_supported: return torch.float16 if dt == torch.bfloat16 and bf16_supported: return torch.bfloat16 return torch.float32 def text_encoder_offload_device(): if args.gpu_only: return get_torch_device() else: return torch.device("cpu") def text_encoder_device(): if args.gpu_only: return get_torch_device() elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: if should_use_fp16(prioritize_performance=False): return get_torch_device() else: return torch.device("cpu") else: return torch.device("cpu") def text_encoder_initial_device(load_device, offload_device, model_size=0): if load_device == offload_device or model_size <= 1024 * 1024 * 1024: return offload_device if is_device_mps(load_device): return load_device mem_l = get_free_memory(load_device) mem_o = get_free_memory(offload_device) if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l: return load_device else: return offload_device def text_encoder_dtype(device=None): if args.fp8_e4m3fn_text_enc: return torch.float8_e4m3fn elif args.fp8_e5m2_text_enc: return torch.float8_e5m2 elif args.fp16_text_enc: return torch.float16 elif args.bf16_text_enc: return torch.bfloat16 elif args.fp32_text_enc: return torch.float32 if is_device_cpu(device): return torch.float16 return torch.float16 def intermediate_device(): if args.gpu_only: return get_torch_device() else: return torch.device("cpu") def vae_device(): if args.cpu_vae: return torch.device("cpu") return get_torch_device() def vae_offload_device(): if args.gpu_only: return get_torch_device() else: return torch.device("cpu") def vae_dtype(device=None, allowed_dtypes=[]): if args.fp16_vae: return torch.float16 elif args.bf16_vae: return torch.bfloat16 elif args.fp32_vae: return torch.float32 for d in allowed_dtypes: if d == torch.float16 and should_use_fp16(device): return d if d == torch.bfloat16 and should_use_bf16(device): return d return torch.float32 def get_autocast_device(dev): if hasattr(dev, 'type'): return dev.type return "cuda" def supports_dtype(device, dtype): # TODO if dtype == torch.float32: return True if is_device_cpu(device): return False if dtype == torch.float16: return True if dtype == torch.bfloat16: return True return False def supports_cast(device, dtype): # TODO if dtype == torch.float32: return True if dtype == torch.float16: return True if directml_device: # TODO: test this return False if dtype == torch.bfloat16: return True if is_device_mps(device): return False if dtype == torch.float8_e4m3fn: return True if dtype == torch.float8_e5m2: return True return False def pick_weight_dtype(dtype, fallback_dtype, device=None): if dtype is None: dtype = fallback_dtype elif dtype_size(dtype) > dtype_size(fallback_dtype): dtype = fallback_dtype if not supports_cast(device, dtype): dtype = fallback_dtype return dtype def device_supports_non_blocking(device): if torch.jit.is_tracing() or torch.jit.is_scripting(): return True if args.force_non_blocking: return True if is_device_mps(device): return False # pytorch bug? mps doesn't support non blocking if is_intel_xpu(): # xpu does support non blocking but it is slower on iGPUs for some reason so disable by default until situation changes return False if args.deterministic: # TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews) return False if directml_device: return False return True def force_channels_last(): if args.force_channels_last: return True # TODO return False STREAMS = {} NUM_STREAMS = 0 if args.async_offload is not None: NUM_STREAMS = args.async_offload else: # Enable by default on Nvidia if is_nvidia(): NUM_STREAMS = 2 if args.disable_async_offload: NUM_STREAMS = 0 if NUM_STREAMS > 0: logger.debug("Using async weight offloading with {} streams".format(NUM_STREAMS)) def current_stream(device): if device is None: return None if is_device_cuda(device): return torch.cuda.current_stream() elif is_device_xpu(device): return torch.xpu.current_stream() else: return None stream_counters = {} def get_offload_stream(device): stream_counter = stream_counters.get(device, 0) if NUM_STREAMS == 0: return None if hasattr(torch.compiler, "is_compiling") and torch.compiler.is_compiling(): # pylint: disable=no-member return None if device in STREAMS: ss = STREAMS[device] # Sync the oldest stream in the queue with the current ss[stream_counter].wait_stream(current_stream(device)) stream_counter = (stream_counter + 1) % len(ss) stream_counters[device] = stream_counter return ss[stream_counter] elif is_device_cuda(device): ss = [] for k in range(NUM_STREAMS): s1 = torch.cuda.Stream(device=device, priority=0) s1.as_context = torch.cuda.stream ss.append(s1) STREAMS[device] = ss s = ss[stream_counter] stream_counters[device] = stream_counter return s elif is_device_xpu(device): ss = [] for k in range(NUM_STREAMS): s1 = torch.xpu.Stream(device=device, priority=0) s1.as_context = torch.xpu.stream ss.append(s1) STREAMS[device] = ss s = ss[stream_counter] stream_counters[device] = stream_counter return s return None def sync_stream(device, stream): if stream is None or current_stream(device) is None: return current_stream(device).wait_stream(stream) def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None): if device is None or weight.device == device: if not copy: if dtype is None or weight.dtype == dtype: return weight if stream is not None: wf_context = stream if hasattr(wf_context, "as_context"): wf_context = wf_context.as_context(stream) with wf_context: return weight.to(dtype=dtype, copy=copy) return weight.to(dtype=dtype, copy=copy) if stream is not None: wf_context = stream if hasattr(wf_context, "as_context"): wf_context = wf_context.as_context(stream) with wf_context: r = torch.empty_like(weight, dtype=dtype, device=device) r.copy_(weight, non_blocking=non_blocking) else: r = torch.empty_like(weight, dtype=dtype, device=device) r.copy_(weight, non_blocking=non_blocking) return r def cast_to_device(tensor, device, dtype, copy=False): non_blocking = device_supports_non_blocking(device) return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy) PINNED_MEMORY = {} TOTAL_PINNED_MEMORY = 0 MAX_PINNED_MEMORY = -1 if not args.disable_pinned_memory: if is_nvidia() or is_amd(): if WINDOWS: MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.45 # Windows limit is apparently 50% else: MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95 logger.debug("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024))) PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"]) def pin_memory(tensor): global TOTAL_PINNED_MEMORY if MAX_PINNED_MEMORY <= 0: return False if type(tensor).__name__ not in PINNING_ALLOWED_TYPES: return False if not is_device_cpu(tensor.device): return False if tensor.is_pinned(): # NOTE: Cuda does detect when a tensor is already pinned and would # error below, but there are proven cases where this also queues an error # on the GPU async. So dont trust the CUDA API and guard here return False if not tensor.is_contiguous(): return False size = tensor.numel() * tensor.element_size() if (TOTAL_PINNED_MEMORY + size) > MAX_PINNED_MEMORY: return False ptr = tensor.data_ptr() if ptr == 0: return False if torch.cuda.cudart().cudaHostRegister(ptr, size, 1) == 0: PINNED_MEMORY[ptr] = size TOTAL_PINNED_MEMORY += size return True return False def unpin_memory(tensor): global TOTAL_PINNED_MEMORY if MAX_PINNED_MEMORY <= 0: return False if not is_device_cpu(tensor.device): return False ptr = tensor.data_ptr() size = tensor.numel() * tensor.element_size() size_stored = PINNED_MEMORY.get(ptr, None) if size_stored is None: logger.warning("Tried to unpin tensor not pinned by ComfyUI") return False if size != size_stored: logger.warning("Size of pinned tensor changed") return False if torch.cuda.cudart().cudaHostUnregister(ptr) == 0: TOTAL_PINNED_MEMORY -= PINNED_MEMORY.pop(ptr) if len(PINNED_MEMORY) == 0: TOTAL_PINNED_MEMORY = 0 return True return False def sage_attention_enabled(): return args.use_sage_attention def flash_attention_enabled(): return args.use_flash_attention def xformers_enabled(): global directml_device global cpu_state if cpu_state != CPUState.GPU: return False if is_intel_xpu(): return False if is_ascend_npu(): return False if is_mlu(): return False if is_ixuca(): return False if directml_device: return False return XFORMERS_IS_AVAILABLE def flash_attn_enabled(): global directml_device global cpu_state if cpu_state != CPUState.GPU: return False if is_intel_xpu(): return False if directml_device: return False return flash_attention_enabled() def xformers_enabled_vae(): enabled = xformers_enabled() if not enabled: return False return XFORMERS_ENABLED_VAE def pytorch_attention_enabled(): global ENABLE_PYTORCH_ATTENTION return ENABLE_PYTORCH_ATTENTION def pytorch_attention_enabled_vae(): if is_amd(): return False # enabling pytorch attention on AMD currently causes crash when doing high res return pytorch_attention_enabled() def pytorch_attention_flash_attention(): global ENABLE_PYTORCH_ATTENTION if ENABLE_PYTORCH_ATTENTION: # TODO: more reliable way of checking for flash attention? if is_nvidia(): return True if is_intel_xpu(): return True if is_ascend_npu(): return True if is_mlu(): return True if is_amd(): return True # if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention if is_ixuca(): return True return False def force_upcast_attention_dtype(): upcast = args.force_upcast_attention macos_version = mac_version() if macos_version is not None and ((14, 5) <= macos_version): # black image bug on recent versions of macOS, I don't think it's ever getting fixed upcast = True if upcast: return {torch.float16: torch.float32} else: return None def get_free_memory(dev=None, torch_free_too=False): global directml_device if dev is None: dev = get_torch_device() if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): mem_free_total = psutil.virtual_memory().available mem_free_torch = mem_free_total else: if directml_device: mem_free_total = 1024 * 1024 * 1024 # TODO mem_free_torch = mem_free_total elif is_intel_xpu(): stats = torch.xpu.memory_stats(dev) # pylint: disable=no-member mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_xpu + mem_free_torch elif is_ascend_npu(): stats = torch.npu.memory_stats(dev) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_npu, _ = torch.npu.mem_get_info(dev) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_npu + mem_free_torch elif is_mlu(): stats = torch.mlu.memory_stats(dev) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_mlu, _ = torch.mlu.mem_get_info(dev) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_mlu + mem_free_torch else: stats = torch.cuda.memory_stats(dev) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_cuda, _ = torch.cuda.mem_get_info(dev) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch if torch_free_too: return (mem_free_total, mem_free_torch) else: return mem_free_total def cpu_mode(): global cpu_state return cpu_state == CPUState.CPU def mps_mode(): global cpu_state return cpu_state == CPUState.MPS def is_device_type(device, type): if hasattr(device, 'type'): if (device.type == type): return True return False def is_device_cpu(device): return is_device_type(device, 'cpu') def is_device_mps(device): return is_device_type(device, 'mps') def is_device_xpu(device): return is_device_type(device, 'xpu') def is_device_cuda(device): return is_device_type(device, 'cuda') def is_directml_enabled(): global directml_device if directml_device is not None: return True return False def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): if device is not None: if is_device_cpu(device): return False if args.force_fp16: return True if FORCE_FP32: return False if is_directml_enabled(): return True if (device is not None and is_device_mps(device)) or mps_mode(): return not bfloat16_support_mps(device) if cpu_mode(): return False if is_intel_xpu(): if torch_version_numeric < (2, 3): return True else: return torch.xpu.get_device_properties(device).has_fp16 if is_ascend_npu(): return True if is_mlu(): return True if is_ixuca(): return True if is_amd(): return True try: props = torch.cuda.get_device_properties(device) if props.major >= 8: return True if props.major < 6: return False except (ValueError, RuntimeError): logger.warning("No CUDA devices were present, even though CUDA is available in this torch installation. This assumes the CPU device will be selected for computation") return False except AssertionError: logger.warning("Torch was not compiled with cuda support") return False # FP16 is confirmed working on a 1080 (GP104) and on latest pytorch actually seems faster than fp32 nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"] for x in nvidia_10_series: if x in props.name.lower(): if WINDOWS or manual_cast: return True else: return False # weird linux behavior where fp32 is faster if manual_cast: free_model_memory = maximum_vram_for_weights(device) if (not prioritize_performance) or model_params * 4 > free_model_memory: return True if props.major < 7: return False # FP16 is just broken on these cards nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] for x in nvidia_16_series: if x in props.name: return False return True def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): if FORCE_BF16: return True if device is not None: if is_device_cpu(device): # TODO ? bf16 works on CPU but is extremely slow return False if FORCE_FP32: return False if directml_device: return False if (device is not None and is_device_mps(device)) or mps_mode(): return bfloat16_support_mps(device) if cpu_mode(): return False if is_intel_xpu(): if torch_version_numeric < (2, 3): return True else: return torch.xpu.is_bf16_supported() if is_ascend_npu(): return True if is_ixuca(): return True if is_amd(): arch = torch.cuda.get_device_properties(device).gcnArchName if any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH): # RDNA2 and older don't support bf16 if manual_cast: return True return False try: props_major = min(torch.cuda.get_device_properties(torch.device(f"cuda:{i}")).major for i in range(torch.cuda.device_count())) if props_major >= 8: return True except (ValueError, RuntimeError): logger.warning("No CUDA devices were present, even though CUDA is available in this torch installation. This assumes the CPU device will be selected for computation") return False except AssertionError: logger.warning("Torch was not compiled with CUDA support") return False bf16_works = torch.cuda.is_bf16_supported() if bf16_works and manual_cast: free_model_memory = maximum_vram_for_weights(device) if (not prioritize_performance) or model_params * 4 > free_model_memory: return True return False def bfloat16_support_mps(device): # test bfloat 16 try: x = torch.ones(1, dtype=torch.bfloat16, device=device) x = x + 1.0 _ = repr(x) supported = True del x except: supported = False return supported def supports_fp8_compute(device=None): if SUPPORT_FP8_OPS: return True if not is_nvidia(): return False try: props = torch.cuda.get_device_properties(device) except (RuntimeError, ValueError, AssertionError): return False if props.major >= 9: return True if props.major < 8: return False if props.minor < 9: return False if torch_version_numeric < (2, 3): return False if WINDOWS: if torch_version_numeric < (2, 4): return False return True def extended_fp16_support(): # TODO: check why some models work with fp16 on newer torch versions but not on older if torch_version_numeric < (2, 7): return False return True LORA_COMPUTE_DTYPES = {} def lora_compute_dtype(device): dtype = LORA_COMPUTE_DTYPES.get(device, None) if dtype is not None: return dtype if should_use_fp16(device): dtype = torch.float16 else: dtype = torch.float32 LORA_COMPUTE_DTYPES[device] = dtype return dtype def soft_empty_cache(force=False): with model_management_lock: _soft_empty_cache(force=force) def _soft_empty_cache(force=False): global cpu_state if cpu_state == CPUState.MPS: torch.mps.empty_cache() # pylint: disable=no-member elif is_intel_xpu(): torch.xpu.empty_cache() # pylint: disable=no-member elif is_ascend_npu(): torch.npu.empty_cache() # pylint: disable=no-member elif is_mlu(): torch.mlu.empty_cache() # pylint: disable=no-member elif torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() def unload_all_models(): with model_management_lock: free_memory(1e30, get_torch_device()) trim_memory() @_deprecate_method(version="*", message="The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.") def resolve_lowvram_weight(weight, model, key): return weight def interrupt_current_processing(value=True): interruption.interrupt_current_processing(value) def processing_interrupted(): interruption.processing_interrupted() def throw_exception_if_processing_interrupted(): interruption.throw_exception_if_processing_interrupted()