""" Portions of this code are adapted from the repository https://github.com/spacepxl/ComfyUI-HQ-Image-Save MIT License Copyright (c) 2023 spacepxl Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import copy from typing import Sequence, Tuple import cv2 import numpy as np import torch from torch import Tensor from .component_model.images_types import ImageMaskTuple read_exr = lambda fp: cv2.imread(fp, cv2.IMREAD_UNCHANGED).astype(np.float32) def mut_srgb_to_linear(np_array) -> None: less = np_array <= 0.0404482362771082 np_array[less] = np_array[less] / 12.92 np_array[~less] = np.power((np_array[~less] + 0.055) / 1.055, 2.4) def mut_linear_to_srgb(np_array) -> None: less = np_array <= 0.0031308 np_array[less] = np_array[less] * 12.92 np_array[~less] = np.power(np_array[~less], 1 / 2.4) * 1.055 - 0.055 def load_exr(file_path: str, srgb: bool) -> ImageMaskTuple: image = read_exr(file_path) rgb = np.flip(image[:, :, :3], 2).copy() if srgb: mut_linear_to_srgb(rgb) rgb = np.clip(rgb, 0, 1) rgb = torch.unsqueeze(torch.from_numpy(rgb), 0) mask = torch.zeros((1, image.shape[0], image.shape[1]), dtype=torch.float32) if image.shape[2] > 3: mask[0] = torch.from_numpy(np.clip(image[:, :, 3], 0, 1)) return ImageMaskTuple(rgb, mask) def load_exr_latent(file_path: str) -> Tuple[Tensor]: image = read_exr(file_path) image = image[:, :, np.array([2, 1, 0, 3])] image = torch.unsqueeze(torch.from_numpy(image), 0) image = torch.movedim(image, -1, 1) return image, def save_exr(images: Tensor, filepaths_batched: Sequence[str], colorspace="linear"): linear = images.detach().clone().cpu().numpy().astype(np.float32) if colorspace == "linear": mut_srgb_to_linear(linear[:, :, :, :3]) # only convert RGB, not Alpha bgr = copy.deepcopy(linear) bgr[:, :, :, 0] = linear[:, :, :, 2] # flip RGB to BGR for opencv bgr[:, :, :, 2] = linear[:, :, :, 0] if bgr.shape[-1] > 3: bgr[:, :, :, 3] = np.clip(1 - linear[:, :, :, 3], 0, 1) # invert alpha for i in range(len(linear.shape[0])): cv2.imwrite(filepaths_batched[i], bgr[i])