""" Adapted from https://github.com/WASasquatch/was-node-suite-comfyui/blob/main/LICENSE MIT License Copyright (c) 2023 Jordan Thompson (WASasquatch) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import json from PIL import Image, ImageDraw, ImageFilter from comfy.component_model.tensor_types import MaskBatch from comfy.nodes.package_typing import CustomNode from comfy.utils import pil2tensor def gradient(size, mode='horizontal', colors=None, tolerance=0): if isinstance(colors, str): colors = json.loads(colors) if colors is None: colors = {0: [255, 0, 0], 50: [0, 255, 0], 100: [0, 0, 255]} colors = {int(k): [int(c) for c in v] for k, v in colors.items()} colors[0] = colors[min(colors.keys())] colors[255] = colors[max(colors.keys())] img = Image.new('RGB', size, color=(0, 0, 0)) color_stop_positions = sorted(colors.keys()) color_stop_count = len(color_stop_positions) spectrum = [] for i in range(256): start_pos = max(p for p in color_stop_positions if p <= i) end_pos = min(p for p in color_stop_positions if p >= i) start = colors[start_pos] end = colors[end_pos] if start_pos == end_pos: factor = 0 else: factor = (i - start_pos) / (end_pos - start_pos) r = round(start[0] + (end[0] - start[0]) * factor) g = round(start[1] + (end[1] - start[1]) * factor) b = round(start[2] + (end[2] - start[2]) * factor) spectrum.append((r, g, b)) draw = ImageDraw.Draw(img) if mode == 'horizontal': for x in range(size[0]): pos = int(x * 100 / (size[0] - 1)) color = spectrum[pos] if tolerance > 0: color = tuple([round(c / tolerance) * tolerance for c in color]) draw.line((x, 0, x, size[1]), fill=color) elif mode == 'vertical': for y in range(size[1]): pos = int(y * 100 / (size[1] - 1)) color = spectrum[pos] if tolerance > 0: color = tuple([round(c / tolerance) * tolerance for c in color]) draw.line((0, y, size[0], y), fill=color) blur = 1.5 if size[0] > 512 or size[1] > 512: multiplier = max(size[0], size[1]) / 512 if multiplier < 1.5: multiplier = 1.5 blur = blur * multiplier img = img.filter(ImageFilter.GaussianBlur(radius=blur)) return img class ImageGenerateGradient(CustomNode): @classmethod def INPUT_TYPES(cls): gradient_stops = '''0:255,0,0 25:255,255,255 50:0,255,0 75:0,0,255''' return { "required": { "width": ("INT", {"default": 512, "max": 4096, "min": 64, "step": 1}), "height": ("INT", {"default": 512, "max": 4096, "min": 64, "step": 1}), "direction": (["horizontal", "vertical"],), "tolerance": ("INT", {"default": 0, "max": 255, "min": 0, "step": 1}), "gradient_stops": ("STRING", {"default": gradient_stops, "multiline": True}), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "image_gradient" CATEGORY = "image/generate" def image_gradient(self, gradient_stops, width=512, height=512, direction='horizontal', tolerance=0) -> tuple[MaskBatch]: import io colors_dict = {} stops = io.StringIO(gradient_stops.strip().replace(' ', '')) for stop in stops: parts = stop.split(':') colors = parts[1].replace('\n', '').split(',') colors_dict[parts[0].replace('\n', '')] = colors image = gradient((width, height), direction, colors_dict, tolerance) return (pil2tensor(image),) NODE_CLASS_MAPPINGS = { "ImageGenerateGradient": ImageGenerateGradient, } NODE_DISPLAY_NAME_MAPPINGS = { "ImageGenerateGradient": "Image Generate Gradient", }