import re from transformers import ByT5Tokenizer from .llama import Qwen25_7BVLI from .qwen_image import QwenImageTokenizer, QwenImageTEModel from .t5 import T5 from .. import sd1_clip from ..component_model import files class ByT5SmallTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data=None): if tokenizer_data is None: tokenizer_data = {} tokenizer_path = files.get_package_as_path("byt5_tokenizer") super().__init__(tokenizer_path, embedding_directory=None, pad_with_end=False, embedding_size=1472, embedding_key='byt5_small', tokenizer_class=ByT5Tokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) class HunyuanImageTokenizer(QwenImageTokenizer): def __init__(self, embedding_directory=None, tokenizer_data=None): if tokenizer_data is None: tokenizer_data = {} super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>" # self.llama_template_images = "{}" self.byt5 = ByT5SmallTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) def tokenize_with_weights(self, text: str, return_word_ids=False, **kwargs): out = super().tokenize_with_weights(text, return_word_ids, **kwargs) # ByT5 processing for HunyuanImage text_prompt_texts = [] pattern_quote_double = r'\"(.*?)\"' pattern_quote_chinese_single = r'‘(.*?)’' pattern_quote_chinese_double = r'“(.*?)”' matches_quote_double = re.findall(pattern_quote_double, text) matches_quote_chinese_single = re.findall(pattern_quote_chinese_single, text) matches_quote_chinese_double = re.findall(pattern_quote_chinese_double, text) text_prompt_texts.extend(matches_quote_double) text_prompt_texts.extend(matches_quote_chinese_single) text_prompt_texts.extend(matches_quote_chinese_double) if len(text_prompt_texts) > 0: out['byt5'] = self.byt5.tokenize_with_weights(''.join(map(lambda a: 'Text "{}". '.format(a), text_prompt_texts)), return_word_ids, **kwargs) return out class Qwen25_7BVLIModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options=None): if model_options is None: model_options = {} llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) if llama_quantization_metadata is not None: model_options = model_options.copy() model_options["quantization_metadata"] = llama_quantization_metadata super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) class ByT5SmallModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options=None, textmodel_json_config=None): if model_options is None: model_options = {} textmodel_json_config = files.get_path_as_dict(textmodel_json_config, "byt5_config_small_glyph.json", package=__package__) super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, model_options=model_options, special_tokens={"end": 1, "pad": 0}, model_class=T5, enable_attention_masks=True, zero_out_masked=True) class HunyuanImageTEModel(QwenImageTEModel): def __init__(self, byt5=True, device="cpu", dtype=None, model_options=None): if model_options is None: model_options = {} super(QwenImageTEModel, self).__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options) if byt5: self.byt5_small = ByT5SmallModel(device=device, dtype=dtype, model_options=model_options) else: self.byt5_small = None def encode_token_weights(self, token_weight_pairs): tok_pairs = token_weight_pairs["qwen25_7b"][0] template_end = -1 if tok_pairs[0][0] == 27: if len(tok_pairs) > 36: # refiner prompt uses a fixed 36 template_end template_end = 36 cond, p, extra = super().encode_token_weights(token_weight_pairs, template_end=template_end) if self.byt5_small is not None and "byt5" in token_weight_pairs: out = self.byt5_small.encode_token_weights(token_weight_pairs["byt5"]) extra["conditioning_byt5small"] = out[0] return cond, p, extra def set_clip_options(self, options): super().set_clip_options(options) if self.byt5_small is not None: self.byt5_small.set_clip_options(options) def reset_clip_options(self): super().reset_clip_options() if self.byt5_small is not None: self.byt5_small.reset_clip_options() def load_sd(self, sd): if "encoder.block.0.layer.0.SelfAttention.o.weight" in sd: return self.byt5_small.load_sd(sd) else: return super().load_sd(sd) def te(byt5=True, dtype_llama=None, llama_quantization_metadata=None): class QwenImageTEModel_(HunyuanImageTEModel): def __init__(self, device="cpu", dtype=None, model_options=None): if model_options is None: model_options = {} if llama_quantization_metadata is not None: model_options = model_options.copy() model_options["llama_quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(byt5=byt5, device=device, dtype=dtype, model_options=model_options) return QwenImageTEModel_