""" This should be imported before entrypoints to correctly configure global options prior to importing packages like torch and cv2. Use this instead of cli_args to import the args: >>> from comfy.cmd.main_pre import args It will enable command line argument parsing. If this isn't desired, you must author your own implementation of these fixes. """ import ctypes import importlib.util import logging import os import shutil import warnings from .. import options from ..app import logger os.environ['TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL'] = '1' os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1" os.environ["TORCHINDUCTOR_AUTOGRAD_CACHE"] = "1" os.environ["BITSANDBYTES_NOWELCOME"] = "1" os.environ["NO_ALBUMENTATIONS_UPDATE"] = "1" os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' os.environ['DO_NOT_TRACK'] = '1' if os.name == "nt": os.environ['MIMALLOC_PURGE_DELAY'] = '0' this_logger = logging.getLogger(__name__) options.enable_args_parsing() if os.name == "nt": logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) warnings.filterwarnings("ignore", message="torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.") warnings.filterwarnings("ignore", message="Torch was not compiled with flash attention.") warnings.filterwarnings("ignore", message=".*Torch was not compiled with flash attention.*") warnings.filterwarnings('ignore', category=FutureWarning, message=r'`torch\.cuda\.amp\.custom_fwd.*') warnings.filterwarnings("ignore", message="Importing from timm.models.registry is deprecated, please import via timm.models", category=FutureWarning) warnings.filterwarnings("ignore", message="Importing from timm.models.layers is deprecated, please import via timm.layers", category=FutureWarning) warnings.filterwarnings("ignore", message="Inheritance class _InstrumentedApplication from web.Application is discouraged", category=DeprecationWarning) warnings.filterwarnings("ignore", message="Please import `gaussian_filter` from the `scipy.ndimage` namespace; the `scipy.ndimage.filters` namespace is deprecated", category=DeprecationWarning) warnings.filterwarnings("ignore", message="The installed version of bitsandbytes was compiled without GPU support") warnings.filterwarnings("ignore", category=UserWarning, message="Unsupported Windows version .* ONNX Runtime supports Windows 10 and above, only.") log_msg_to_filter = "NOTE: Redirects are currently not supported in Windows or MacOs." logging.getLogger("torch.distributed.elastic.multiprocessing.redirects").addFilter( lambda record: log_msg_to_filter not in record.getMessage() ) logging.getLogger("alembic.runtime.migration").setLevel(logging.WARNING) logging.getLogger("asyncio").addFilter(lambda record: 'Using selector:' not in record.getMessage()) from ..cli_args import args if args.default_device is not None: default_dev = args.default_device devices = list(range(32)) devices.remove(default_dev) devices.insert(0, default_dev) devices = ','.join(map(str, devices)) os.environ['CUDA_VISIBLE_DEVICES'] = str(devices) os.environ['HIP_VISIBLE_DEVICES'] = str(devices) if args.cuda_device is not None: os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device) os.environ['HIP_VISIBLE_DEVICES'] = str(args.cuda_device) os.environ["ASCEND_RT_VISIBLE_DEVICES"] = str(args.cuda_device) this_logger.info("Set cuda device to: {}".format(args.cuda_device)) if args.deterministic: if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ: os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8" if args.oneapi_device_selector is not None: os.environ['ONEAPI_DEVICE_SELECTOR'] = args.oneapi_device_selector this_logger.info("Set oneapi device selector to: {}".format(args.oneapi_device_selector)) try: from . import cuda_malloc except Exception: pass def _fix_pytorch_240(): """Fixes pytorch 2.4.0""" torch_spec = importlib.util.find_spec("torch") for folder in torch_spec.submodule_search_locations: lib_folder = os.path.join(folder, "lib") test_file = os.path.join(lib_folder, "fbgemm.dll") dest = os.path.join(lib_folder, "libomp140.x86_64.dll") if os.path.exists(dest): break try: with open(test_file, 'rb') as f: contents = f.read() # todo: dubious if b"libomp140.x86_64.dll" not in contents: break try: _ = ctypes.cdll.LoadLibrary(test_file) except FileNotFoundError: this_logger.warning("Detected pytorch version with libomp issue, trying to patch") try: shutil.copyfile(os.path.join(lib_folder, "libiomp5md.dll"), dest) except Exception as exc_info: this_logger.error("While trying to patch a fix for torch 2.4.0, an error occurred, which means this is unlikely to work", exc_info=exc_info) except: pass def _create_tracer(): from opentelemetry import trace from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter from opentelemetry.instrumentation.aio_pika import AioPikaInstrumentor from opentelemetry.instrumentation.requests import RequestsInstrumentor from opentelemetry.semconv.attributes import service_attributes from opentelemetry.sdk.resources import Resource from opentelemetry.sdk.trace import TracerProvider from opentelemetry.sdk.trace.export import BatchSpanProcessor, SpanExporter from ..tracing_compatibility import ProgressSpanSampler from ..tracing_compatibility import patch_spanbuilder_set_channel from ..vendor.aiohttp_server_instrumentation import AioHttpServerInstrumentor resource = Resource.create({ service_attributes.SERVICE_NAME: args.otel_service_name, service_attributes.SERVICE_VERSION: args.otel_service_version, }) # omit progress spans from aio pika sampler = ProgressSpanSampler() provider = TracerProvider(resource=resource, sampler=sampler) has_endpoint = args.otel_exporter_otlp_endpoint is not None if has_endpoint: otlp_exporter = OTLPSpanExporter() else: otlp_exporter = SpanExporter() processor = BatchSpanProcessor(otlp_exporter) provider.add_span_processor(processor) # enable instrumentation patch_spanbuilder_set_channel() AioPikaInstrumentor().instrument() AioHttpServerInstrumentor().instrument() RequestsInstrumentor().instrument() # makes this behave better as a library return trace.get_tracer(args.otel_service_name, tracer_provider=provider) def _configure_logging(): logging_level = args.logging_level logger.setup_logger(logging_level) _configure_logging() _fix_pytorch_240() tracer = _create_tracer() __all__ = ["args", "tracer"]