#!/usr/bin/env python3 """ Tiny AutoEncoder for Stable Diffusion (DNN for encoding / decoding SD's latent space) """ import torch import torch.nn as nn import comfy.utils import comfy.ops def conv(n_in, n_out, **kwargs): return comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 3, padding=1, **kwargs) class Clamp(nn.Module): def forward(self, x): return torch.tanh(x / 3) * 3 class Block(nn.Module): def __init__(self, n_in, n_out, use_midblock_gn=False): super().__init__() self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out)) self.skip = comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() self.fuse = nn.ReLU() self.pool = None if use_midblock_gn: conv1x1, n_gn = lambda n_in, n_out: comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False), n_in*4 self.pool = nn.Sequential(conv1x1(n_in, n_gn), comfy.ops.disable_weight_init.GroupNorm(4, n_gn), nn.ReLU(inplace=True), conv1x1(n_gn, n_in)) def forward(self, x): if self.pool is not None: x = x + self.pool(x) return self.fuse(self.conv(x) + self.skip(x)) def Encoder(latent_channels=4, use_midblock_gn=False): mb_kw = dict(use_midblock_gn=use_midblock_gn) return nn.Sequential( conv(3, 64), Block(64, 64), conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), conv(64, 64, stride=2, bias=False), Block(64, 64, **mb_kw), Block(64, 64, **mb_kw), Block(64, 64, **mb_kw), conv(64, latent_channels), ) def Decoder(latent_channels=4, use_midblock_gn=False): mb_kw = dict(use_midblock_gn=use_midblock_gn) return nn.Sequential( Clamp(), conv(latent_channels, 64), nn.ReLU(), Block(64, 64, **mb_kw), Block(64, 64, **mb_kw), Block(64, 64, **mb_kw), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), Block(64, 64), conv(64, 3), ) class TAESD(nn.Module): latent_magnitude = 3 latent_shift = 0.5 def __init__(self, encoder_path=None, decoder_path=None, latent_channels=4, use_midblock_gn=False): """Initialize pretrained TAESD on the given device from the given checkpoints.""" super().__init__() self.latent_channels = latent_channels self.use_midblock_gn = use_midblock_gn self.taesd_encoder = Encoder(latent_channels=latent_channels, use_midblock_gn=use_midblock_gn) self.taesd_decoder = Decoder(latent_channels=latent_channels, use_midblock_gn=use_midblock_gn) if encoder_path is not None: self.taesd_encoder, self.latent_channels = self._load_model(encoder_path, Encoder) if decoder_path is not None: self.taesd_decoder, self.latent_channels = self._load_model(decoder_path, Decoder) self.vae_scale = torch.nn.Parameter(torch.tensor(1.0)) self.vae_shift = torch.nn.Parameter(torch.tensor(0.0)) def _load_model(self, path, model_class): """Load a TAESD encoder or decoder from a file.""" sd = comfy.utils.load_torch_file(path, safe_load=True) latent_channels = sd["1.weight"].shape[1] model = model_class(latent_channels=latent_channels, use_midblock_gn="3.pool.0.weight" in sd) model.load_state_dict(sd) return model, latent_channels @staticmethod def scale_latents(x): """raw latents -> [0, 1]""" return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1) @staticmethod def unscale_latents(x): """[0, 1] -> raw latents""" return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) def decode(self, x): if x.shape[1] == self.latent_channels * 4: x = x.reshape(x.shape[0], self.latent_channels, 2, 2, x.shape[-2], x.shape[-1]).permute(0, 1, 4, 2, 5, 3).reshape(x.shape[0], self.latent_channels, x.shape[-2] * 2, x.shape[-1] * 2) x_sample = self.taesd_decoder((x - self.vae_shift) * self.vae_scale) x_sample = x_sample.sub(0.5).mul(2) return x_sample def encode(self, x): x_sample = (self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale) + self.vae_shift if self.latent_channels == 32 and self.use_midblock_gn: # Only taef2 for Flux2 currently, pack latents: [B, C, H, W] -> [B, C*4, H//2, W//2] x_sample = x_sample.reshape(x_sample.shape[0], self.latent_channels, x_sample.shape[-2] // 2, 2, x_sample.shape[-1] // 2, 2).permute(0, 1, 3, 5, 2, 4).reshape(x_sample.shape[0], self.latent_channels * 4, x_sample.shape[-2] // 2, x_sample.shape[-1] // 2) return x_sample