# coding: utf-8 """ comfyui No description provided (generated by Openapi JSON Schema Generator https://github.com/openapi-json-schema-tools/openapi-json-schema-generator) # noqa: E501 The version of the OpenAPI document: 0.0.1 Generated by: https://github.com/openapi-json-schema-tools/openapi-json-schema-generator """ from __future__ import annotations import datetime import dataclasses import io import typing import uuid import typing_extensions from comfy.api.configurations import schema_configuration from . import schema, validation @dataclasses.dataclass(frozen=True) class ListSchema(schema.Schema[validation.immutabledict, tuple]): types: typing.FrozenSet[typing.Type] = frozenset({tuple}) @typing.overload @classmethod def validate( cls, arg: typing.Union[ typing.List[schema.INPUT_TYPES_ALL], schema.U ], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> schema.U: ... @typing.overload @classmethod def validate( cls, arg: typing.Union[ typing.Tuple[schema.INPUT_TYPES_ALL, ...], schema.U ], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> schema.U: ... @classmethod def validate( cls, arg, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ): return super().validate_base(arg, configuration=configuration) @dataclasses.dataclass(frozen=True) class NoneSchema(schema.Schema): types: typing.FrozenSet[typing.Type] = frozenset({type(None)}) @classmethod def validate( cls, arg: None, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> None: return super().validate_base(arg, configuration=configuration) @dataclasses.dataclass(frozen=True) class NumberSchema(schema.Schema): """ This is used for type: number with no format Both integers AND floats are accepted """ types: typing.FrozenSet[typing.Type] = frozenset({float, int}) @typing.overload @classmethod def validate( cls, arg: int, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> int: ... @typing.overload @classmethod def validate( cls, arg: float, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> float: ... @classmethod def validate( cls, arg, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ): return super().validate_base(arg, configuration=configuration) @dataclasses.dataclass(frozen=True) class IntSchema(NumberSchema): types: typing.FrozenSet[typing.Type] = frozenset({int, float}) format: str = 'int' @dataclasses.dataclass(frozen=True) class Int32Schema(IntSchema): types: typing.FrozenSet[typing.Type] = frozenset({int, float}) format: str = 'int32' @dataclasses.dataclass(frozen=True) class Int64Schema(IntSchema): types: typing.FrozenSet[typing.Type] = frozenset({int, float}) format: str = 'int64' @dataclasses.dataclass(frozen=True) class Float32Schema(NumberSchema): types: typing.FrozenSet[typing.Type] = frozenset({float}) format: str = 'float' @dataclasses.dataclass(frozen=True) class Float64Schema(NumberSchema): types: typing.FrozenSet[typing.Type] = frozenset({float}) format: str = 'double' @dataclasses.dataclass(frozen=True) class StrSchema(schema.Schema): """ date + datetime string types must inherit from this class That is because one can validate a str payload as both: - type: string (format unset) - type: string, format: date """ types: typing.FrozenSet[typing.Type] = frozenset({str}) @classmethod def validate( cls, arg: str, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> str: return super().validate_base(arg, configuration=configuration) @dataclasses.dataclass(frozen=True) class UUIDSchema(schema.Schema): types: typing.FrozenSet[typing.Type] = frozenset({str}) format: str = 'uuid' @classmethod def validate( cls, arg: typing.Union[str, uuid.UUID], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> str: return super().validate_base(arg, configuration=configuration) @dataclasses.dataclass(frozen=True) class DateSchema(schema.Schema): types: typing.FrozenSet[typing.Type] = frozenset({str}) format: str = 'date' @classmethod def validate( cls, arg: typing.Union[str, datetime.date], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> str: return super().validate_base(arg, configuration=configuration) @dataclasses.dataclass(frozen=True) class DateTimeSchema(schema.Schema): types: typing.FrozenSet[typing.Type] = frozenset({str}) format: str = 'date-time' @classmethod def validate( cls, arg: typing.Union[str, datetime.datetime], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> str: return super().validate_base(arg, configuration=configuration) @dataclasses.dataclass(frozen=True) class DecimalSchema(schema.Schema): types: typing.FrozenSet[typing.Type] = frozenset({str}) format: str = 'number' @classmethod def validate( cls, arg: str, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> str: """ Note: Decimals may not be passed in because cast_to_allowed_types is only invoked once for payloads which can be simple (str) or complex (dicts or lists with nested values) Because casting is only done once and recursively casts all values prior to validation then for a potential client side Decimal input if Decimal was accepted as an input in DecimalSchema then one would not know if one was using it for a StrSchema (where it should be cast to str) or one is using it for NumberSchema where it should stay as Decimal. """ return super().validate_base(arg, configuration=configuration) @dataclasses.dataclass(frozen=True) class BytesSchema(schema.Schema): """ this class will subclass bytes and is immutable """ types: typing.FrozenSet[typing.Type] = frozenset({bytes}) @classmethod def validate( cls, arg: bytes, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> bytes: return cls.validate_base(arg) @dataclasses.dataclass(frozen=True) class FileSchema(schema.Schema): """ This class is NOT immutable Dynamic classes are built using it for example when AnyType allows in binary data Al other schema classes ARE immutable If one wanted to make this immutable one could make this a DictSchema with required properties: - data = BytesSchema (which would be an immutable bytes based schema) - file_name = StrSchema and cast_to_allowed_types would convert bytes and file instances into dicts containing data + file_name The downside would be that data would be stored in memory which one may not want to do for very large files The developer is responsible for closing this file and deleting it This class was kept as mutable: - to allow file reading and writing to disk - to be able to preserve file name info """ types: typing.FrozenSet[typing.Type] = frozenset({schema.FileIO}) @classmethod def validate( cls, arg: typing.Union[io.FileIO, io.BufferedReader], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> schema.FileIO: return cls.validate_base(arg) @dataclasses.dataclass(frozen=True) class BinarySchema(schema.Schema): types: typing.FrozenSet[typing.Type] = frozenset({schema.FileIO, bytes}) format: str = 'binary' one_of: typing.Tuple[typing.Type[schema.Schema], ...] = ( BytesSchema, FileSchema, ) @classmethod def validate( cls, arg: typing.Union[io.FileIO, io.BufferedReader, bytes], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> typing.Union[schema.FileIO, bytes]: return cls.validate_base(arg) @dataclasses.dataclass(frozen=True) class BoolSchema(schema.Schema): types: typing.FrozenSet[typing.Type] = frozenset({schema.Bool}) @typing.overload @classmethod def validate( cls, arg: typing.Literal[True], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> typing.Literal[True]: ... @typing.overload @classmethod def validate( cls, arg: typing.Literal[False], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> typing.Literal[False]: ... @typing.overload @classmethod def validate( cls, arg: bool, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> bool: ... @classmethod def validate( cls, arg, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ): return super().validate_base(arg, configuration=configuration) @dataclasses.dataclass(frozen=True) class NotAnyTypeSchema(schema.AnyTypeSchema): """ Python representation of a schema defined as false or {'not': {}} Does not allow inputs in of AnyType Note: validations on this class are never run because the code knows that no inputs will ever validate """ not_: typing.Type[schema.Schema] = schema.AnyTypeSchema @classmethod def validate( cls, arg, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None, ): return super().validate_base(arg, configuration=configuration) OUTPUT_BASE_TYPES = typing.Union[ validation.immutabledict[str, 'OUTPUT_BASE_TYPES'], str, int, float, bool, schema.none_type_, typing.Tuple['OUTPUT_BASE_TYPES', ...], bytes, schema.FileIO ] @dataclasses.dataclass(frozen=True) class DictSchema(schema.Schema[schema.validation.immutabledict[str, OUTPUT_BASE_TYPES], tuple]): types: typing.FrozenSet[typing.Type] = frozenset({validation.immutabledict}) @typing.overload @classmethod def validate( cls, arg: schema.validation.immutabledict[str, OUTPUT_BASE_TYPES], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> schema.validation.immutabledict[str, OUTPUT_BASE_TYPES]: ... @typing.overload @classmethod def validate( cls, arg: typing.Mapping[str, schema.INPUT_TYPES_ALL], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> schema.validation.immutabledict[str, OUTPUT_BASE_TYPES]: ... @classmethod def validate( cls, arg, configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None, ) -> schema.validation.immutabledict[str, OUTPUT_BASE_TYPES]: return super().validate_base(arg, configuration=configuration)