from importlib import resources from .. import sd1_clip from .spiece_tokenizer import SPieceTokenizer from ..text_encoders import t5 from ..component_model.files import get_path_as_dict class PT5XlModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options=None, textmodel_json_config=None): if model_options is None: model_options = dict() textmodel_json_config = get_path_as_dict(textmodel_json_config, "t5_pile_config_xl.json", package=__package__) super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 2, "pad": 1}, model_class=t5.T5, enable_attention_masks=True, zero_out_masked=True) class PT5XlTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, **kwargs): tokenizer_path = resources.files("comfy.text_encoders.t5_pile_tokenizer") / "tokenizer.model" tokenizer_data = kwargs.pop("tokenizer_data", {}) super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1, tokenizer_data=tokenizer_data) class AuraT5Tokenizer(sd1_clip.SD1Tokenizer): def __init__(self, embedding_directory=None, tokenizer_data=None): if tokenizer_data is None: tokenizer_data = dict() super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="pile_t5xl", tokenizer=PT5XlTokenizer) class AuraT5Model(sd1_clip.SD1ClipModel): def __init__(self, device="cpu", dtype=None, model_options=None, **kwargs): if model_options is None: model_options = {} super().__init__(device=device, dtype=dtype, model_options=model_options, name="pile_t5xl", clip_model=PT5XlModel, **kwargs)