from transformers import T5TokenizerFast from .t5 import T5 from .. import sd1_clip from ..component_model import files from ..component_model.files import get_path_as_dict class T5XXLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options=None, textmodel_json_config=None): if model_options is None: model_options = {} textmodel_json_config = get_path_as_dict(textmodel_json_config, "t5_old_config_xxl.json", package=__package__) t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None) if t5xxl_scaled_fp8 is not None: model_options = model_options.copy() model_options["scaled_fp8"] = t5xxl_scaled_fp8 super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, zero_out_masked=attention_mask, model_options=model_options) class CosmosT5XXL(sd1_clip.SD1ClipModel): def __init__(self, device="cpu", dtype=None, model_options=None): if model_options is None: model_options = {} super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options) class T5XXLTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data=None): if tokenizer_data is None: tokenizer_data = {} tokenizer_path = files.get_package_as_path("comfy.text_encoders.t5_tokenizer") super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512) class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer): def __init__(self, embedding_directory=None, tokenizer_data=None): if tokenizer_data is None: tokenizer_data = {} super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) def te(dtype_t5=None, t5xxl_scaled_fp8=None): class CosmosTEModel_(CosmosT5XXL): def __init__(self, device="cpu", dtype=None, model_options=None): if model_options is None: model_options = {} if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: model_options = model_options.copy() model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 if dtype is None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) return CosmosTEModel_