""" Portions of this code are adapted from the repository https://github.com/ChenyangSi/FreeU MIT License Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import torch import logging def Fourier_filter(x, threshold, scale): # FFT x_freq = torch.fft.fftn(x.float(), dim=(-2, -1)) x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1)) B, C, H, W = x_freq.shape mask = torch.ones((B, C, H, W), device=x.device) crow, ccol = H // 2, W //2 mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale x_freq = x_freq * mask # IFFT x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1)) x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real return x_filtered.to(x.dtype) class FreeU: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}), "b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}), "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), }} RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "model_patches/unet" def patch(self, model, b1, b2, s1, s2): model_channels = model.model.model_config.unet_config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} def output_block_patch(h, hsp, transformer_options): scale = scale_dict.get(int(h.shape[1]), None) if scale is not None: h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * scale[0] if hsp.device not in on_cpu_devices: try: hsp = Fourier_filter(hsp, threshold=1, scale=scale[1]) except: logging.warning("Device {} does not support the torch.fft functions used in the FreeU node, switching to CPU.".format(hsp.device)) on_cpu_devices[hsp.device] = True hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) else: hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) return h, hsp m = model.clone() m.set_model_output_block_patch(output_block_patch) return (m, ) class FreeU_V2: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}), "b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}), "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), }} RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "model_patches/unet" def patch(self, model, b1, b2, s1, s2): model_channels = model.model.model_config.unet_config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} def output_block_patch(h, hsp, transformer_options): scale = scale_dict.get(int(h.shape[1]), None) if scale is not None: hidden_mean = h.mean(1).unsqueeze(1) B = hidden_mean.shape[0] hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1) if hsp.device not in on_cpu_devices: try: hsp = Fourier_filter(hsp, threshold=1, scale=scale[1]) except: logging.warning("Device {} does not support the torch.fft functions used in the FreeU node, switching to CPU.".format(hsp.device)) on_cpu_devices[hsp.device] = True hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) else: hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) return h, hsp m = model.clone() m.set_model_output_block_patch(output_block_patch) return (m, ) NODE_CLASS_MAPPINGS = { "FreeU": FreeU, "FreeU_V2": FreeU_V2, }