import copy import torch from transformers import T5TokenizerFast from .t5 import T5 from .. import sd1_clip, model_management from ..component_model import files class T5XXLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options=None, textmodel_json_config=None): if model_options is None: model_options = dict() textmodel_json_config = files.get_path_as_dict(textmodel_json_config, "t5_config_xxl.json", package=__package__) super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5) class T5XXLTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data=None): if tokenizer_data is None: tokenizer_data = dict() tokenizer_path = files.get_package_as_path("comfy.text_encoders.t5_tokenizer") super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256) class FluxTokenizer: def __init__(self, embedding_directory=None, tokenizer_data=None): if tokenizer_data is None: tokenizer_data = dict() clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer) self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory) self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory) def tokenize_with_weights(self, text: str, return_word_ids=False): out = { "l": self.clip_l.tokenize_with_weights(text, return_word_ids), "t5xxl": self.t5xxl.tokenize_with_weights(text, return_word_ids) } return out def untokenize(self, token_weight_pair): return self.clip_l.untokenize(token_weight_pair) def state_dict(self): return {} def clone(self): return copy.copy(self) class FluxClipModel(torch.nn.Module): def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options=None): super().__init__() if model_options is None: model_options = {} dtype_t5 = model_management.pick_weight_dtype(dtype_t5, dtype, device) clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel) self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options) self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options) self.dtypes = {dtype, dtype_t5} def set_clip_options(self, options): self.clip_l.set_clip_options(options) self.t5xxl.set_clip_options(options) def reset_clip_options(self): self.clip_l.reset_clip_options() self.t5xxl.reset_clip_options() def encode_token_weights(self, token_weight_pairs): token_weight_pairs_l = token_weight_pairs["l"] token_weight_pairs_t5 = token_weight_pairs["t5xxl"] t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pairs_t5) l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) return t5_out, l_pooled def load_sd(self, sd): if "text_model.encoder.layers.1.mlp.fc1.weight" in sd: return self.clip_l.load_sd(sd) else: return self.t5xxl.load_sd(sd) def flux_clip(dtype_t5=None): class FluxClipModel_(FluxClipModel): def __init__(self, device="cpu", dtype=None, model_options=None): if model_options is None: model_options = {} super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options) return FluxClipModel_