import torch def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None): mantissa_scaled = torch.where( normal_mask, (abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS), (abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS))) ) mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator) return mantissa_scaled.floor() / (2**MANTISSA_BITS) #Not 100% sure about this def manual_stochastic_round_to_float8(x, dtype, generator=None): if dtype == torch.float8_e4m3fn: EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7 elif dtype == torch.float8_e5m2: EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15 else: raise ValueError("Unsupported dtype") x = x.half() sign = torch.sign(x) abs_x = x.abs() sign = torch.where(abs_x == 0, 0, sign) # Combine exponent calculation and clamping exponent = torch.clamp( torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS, 0, 2**EXPONENT_BITS - 1 ) # Combine mantissa calculation and rounding normal_mask = ~(exponent == 0) abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator) sign *= torch.where( normal_mask, (2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x), (2.0 ** (-EXPONENT_BIAS + 1)) * abs_x ) inf = torch.finfo(dtype) torch.clamp(sign, min=inf.min, max=inf.max, out=sign) return sign def stochastic_rounding(value, dtype, seed=0): if dtype == torch.float32: return value.to(dtype=torch.float32) if dtype == torch.float16: return value.to(dtype=torch.float16) if dtype == torch.bfloat16: return value.to(dtype=torch.bfloat16) if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2: generator = torch.Generator(device=value.device) generator.manual_seed(seed) output = torch.empty_like(value, dtype=dtype) num_slices = max(1, (value.numel() / (4096 * 4096))) slice_size = max(1, round(value.shape[0] / num_slices)) for i in range(0, value.shape[0], slice_size): output[i:i+slice_size].copy_(manual_stochastic_round_to_float8(value[i:i+slice_size], dtype, generator=generator)) return output return value.to(dtype=dtype) # TODO: improve this? def stochastic_float_to_fp4_e2m1(x, generator): orig_shape = x.shape sign = torch.signbit(x).to(torch.uint8) exp = torch.floor(torch.log2(x.abs()) + 1.0).clamp(0, 3) x += (torch.rand(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator) - 0.5) * (2 ** (exp - 2.0)) * 1.25 x = x.abs() exp = torch.floor(torch.log2(x) + 1.1925).clamp(0, 3) mantissa = torch.where( exp > 0, (x / (2.0 ** (exp - 1)) - 1.0) * 2.0, (x * 2.0), out=x ).round().to(torch.uint8) del x exp = exp.to(torch.uint8) fp4 = (sign << 3) | (exp << 1) | mantissa del sign, exp, mantissa fp4_flat = fp4.view(-1) packed = (fp4_flat[0::2] << 4) | fp4_flat[1::2] return packed.reshape(list(orig_shape)[:-1] + [-1]) def to_blocked(input_matrix, flatten: bool = True) -> torch.Tensor: """ Rearrange a large matrix by breaking it into blocks and applying the rearrangement pattern. See: https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-factors-layout Args: input_matrix: Input tensor of shape (H, W) Returns: Rearranged tensor of shape (32*ceil_div(H,128), 16*ceil_div(W,4)) """ def ceil_div(a, b): return (a + b - 1) // b rows, cols = input_matrix.shape n_row_blocks = ceil_div(rows, 128) n_col_blocks = ceil_div(cols, 4) # Calculate the padded shape padded_rows = n_row_blocks * 128 padded_cols = n_col_blocks * 4 padded = input_matrix if (rows, cols) != (padded_rows, padded_cols): padded = torch.zeros( (padded_rows, padded_cols), device=input_matrix.device, dtype=input_matrix.dtype, ) padded[:rows, :cols] = input_matrix # Rearrange the blocks blocks = padded.view(n_row_blocks, 128, n_col_blocks, 4).permute(0, 2, 1, 3) rearranged = blocks.reshape(-1, 4, 32, 4).transpose(1, 2).reshape(-1, 32, 16) if flatten: return rearranged.flatten() return rearranged.reshape(padded_rows, padded_cols) def stochastic_round_quantize_nvfp4(x, per_tensor_scale, pad_16x, seed=0): F4_E2M1_MAX = 6.0 F8_E4M3_MAX = 448.0 def roundup(x: int, multiple: int) -> int: """Round up x to the nearest multiple.""" return ((x + multiple - 1) // multiple) * multiple orig_shape = x.shape # Handle padding if pad_16x: rows, cols = x.shape padded_rows = roundup(rows, 16) padded_cols = roundup(cols, 16) if padded_rows != rows or padded_cols != cols: x = torch.nn.functional.pad(x, (0, padded_cols - cols, 0, padded_rows - rows)) # Note: We update orig_shape because the output tensor logic below assumes x.shape matches # what we want to produce. If we pad here, we want the padded output. orig_shape = x.shape block_size = 16 x = x.reshape(orig_shape[0], -1, block_size) scaled_block_scales_fp8 = torch.clamp(((torch.amax(torch.abs(x), dim=-1)) / F4_E2M1_MAX) / per_tensor_scale.to(x.dtype), max=F8_E4M3_MAX).to(torch.float8_e4m3fn) x /= (per_tensor_scale.to(x.dtype) * scaled_block_scales_fp8.to(x.dtype)).unsqueeze(-1) generator = torch.Generator(device=x.device) generator.manual_seed(seed) x = x.view(orig_shape).nan_to_num() data_lp = stochastic_float_to_fp4_e2m1(x, generator=generator) blocked_scales = to_blocked(scaled_block_scales_fp8, flatten=False) return data_lp, blocked_scales