from comfy import model_management import math class LTXVLatentUpsampler: """ Upsamples a video latent by a factor of 2. """ @classmethod def INPUT_TYPES(s): return { "required": { "samples": ("LATENT",), "upscale_model": ("LATENT_UPSCALE_MODEL",), "vae": ("VAE",), } } RETURN_TYPES = ("LATENT",) FUNCTION = "upsample_latent" CATEGORY = "latent/video" EXPERIMENTAL = True def upsample_latent( self, samples: dict, upscale_model, vae, ) -> tuple: """ Upsample the input latent using the provided model. Args: samples (dict): Input latent samples upscale_model (LatentUpsampler): Loaded upscale model vae: VAE model for normalization auto_tiling (bool): Whether to automatically tile the input for processing Returns: tuple: Tuple containing the upsampled latent """ device = model_management.get_torch_device() memory_required = model_management.module_size(upscale_model) model_dtype = next(upscale_model.parameters()).dtype latents = samples["samples"] input_dtype = latents.dtype memory_required += math.prod(latents.shape) * 3000.0 # TODO: more accurate model_management.free_memory(memory_required, device) try: upscale_model.to(device) # TODO: use the comfy model management system. latents = latents.to(dtype=model_dtype, device=device) """Upsample latents without tiling.""" latents = vae.first_stage_model.per_channel_statistics.un_normalize(latents) upsampled_latents = upscale_model(latents) finally: upscale_model.cpu() upsampled_latents = vae.first_stage_model.per_channel_statistics.normalize( upsampled_latents ) upsampled_latents = upsampled_latents.to(dtype=input_dtype, device=model_management.intermediate_device()) return_dict = samples.copy() return_dict["samples"] = upsampled_latents return_dict.pop("noise_mask", None) return (return_dict,) NODE_CLASS_MAPPINGS = { "LTXVLatentUpsampler": LTXVLatentUpsampler, }