from transformers import Qwen2Tokenizer, T5TokenizerFast import comfy.text_encoders.llama from comfy import sd1_clip import os import torch class Qwen3Tokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer") super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='qwen3_06b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data) class T5XXLTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) class AnimaTokenizer: def __init__(self, embedding_directory=None, tokenizer_data={}): self.qwen3_06b = Qwen3Tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): out = {} qwen_ids = self.qwen3_06b.tokenize_with_weights(text, return_word_ids, **kwargs) out["qwen3_06b"] = [[(token, 1.0) for token, _ in inner_list] for inner_list in qwen_ids] # Set weights to 1.0 out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs) return out def untokenize(self, token_weight_pair): return self.t5xxl.untokenize(token_weight_pair) def state_dict(self): return {} class Qwen3_06BModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}): super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_06B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) class AnimaTEModel(sd1_clip.SD1ClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): super().__init__(device=device, dtype=dtype, name="qwen3_06b", clip_model=Qwen3_06BModel, model_options=model_options) def encode_token_weights(self, token_weight_pairs): out = super().encode_token_weights(token_weight_pairs) out[2]["t5xxl_ids"] = torch.tensor(list(map(lambda a: a[0], token_weight_pairs["t5xxl"][0])), dtype=torch.int) out[2]["t5xxl_weights"] = torch.tensor(list(map(lambda a: a[1], token_weight_pairs["t5xxl"][0]))) return out def te(dtype_llama=None, llama_quantization_metadata=None): class AnimaTEModel_(AnimaTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): if dtype_llama is not None: dtype = dtype_llama if llama_quantization_metadata is not None: model_options = model_options.copy() model_options["quantization_metadata"] = llama_quantization_metadata super().__init__(device=device, dtype=dtype, model_options=model_options) return AnimaTEModel_