import copy import sentencepiece import torch class SPieceTokenizer: add_eos = True @staticmethod def from_pretrained(path): return SPieceTokenizer(path) def __init__(self, tokenizer_path): if torch.is_tensor(tokenizer_path): tokenizer_path = tokenizer_path.numpy().tobytes() construction_args = {} if isinstance(tokenizer_path, bytes): construction_args["model_proto"] = tokenizer_path else: construction_args["model_file"] = tokenizer_path self.tokenizer = sentencepiece.SentencePieceProcessor(add_eos=SPieceTokenizer.add_eos, **construction_args) # pylint: disable=unexpected-keyword-arg self.end = self.tokenizer.eos_id() self.eos_token_id = self.end self.eos_token = self.tokenizer.id_to_piece(self.eos_token_id) # pylint: disable=no-member self._vocab = { self.tokenizer.id_to_piece(i): i for i in range(self.tokenizer.get_piece_size()) # pylint: disable=no-member } def get_vocab(self): return self._vocab def __call__(self, string): out = self.tokenizer.encode(string) # pylint: disable=no-member return {"input_ids": out} def serialize_model(self): return torch.ByteTensor(list(self.tokenizer.serialized_model_proto())) def clone(self): return copy.copy(self)