import torch class StubImage: def __init__(self): pass @classmethod def INPUT_TYPES(cls): return { "required": { "content": (['WHITE', 'BLACK', 'NOISE'],), "height": ("INT", {"default": 512, "min": 1, "max": 1024 ** 3, "step": 1}), "width": ("INT", {"default": 512, "min": 1, "max": 4096 ** 3, "step": 1}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 1024 ** 3, "step": 1}), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "stub_image" CATEGORY = "Testing/Stub Nodes" def stub_image(self, content, height, width, batch_size): if content == "WHITE": return (torch.ones(batch_size, height, width, 3),) elif content == "BLACK": return (torch.zeros(batch_size, height, width, 3),) elif content == "NOISE": return (torch.rand(batch_size, height, width, 3),) class StubMask: def __init__(self): pass @classmethod def INPUT_TYPES(cls): return { "required": { "value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), "height": ("INT", {"default": 512, "min": 1, "max": 1024 ** 3, "step": 1}), "width": ("INT", {"default": 512, "min": 1, "max": 4096 ** 3, "step": 1}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 1024 ** 3, "step": 1}), }, } RETURN_TYPES = ("MASK",) FUNCTION = "stub_mask" CATEGORY = "Testing/Stub Nodes" def stub_mask(self, value, height, width, batch_size): return (torch.ones(batch_size, height, width) * value,) TEST_STUB_NODE_CLASS_MAPPINGS = { "StubImage": StubImage, "StubMask": StubMask, } TEST_STUB_NODE_DISPLAY_NAME_MAPPINGS = { "StubImage": "Stub Image", "StubMask": "Stub Mask", }