ComfyUI/comfy_api_nodes/nodes_rodin.py
Sasbom 0ef5557d6a Add QOL feature for changing the custom nodes folder location through cli args.
bugfix: fix typo in apply_directory for custom_nodes_directory

allow for PATH style ';' delimited custom_node directories.

change delimiter type for seperate folders per platform.

feat(API-nodes): move Rodin3D nodes to new client; removed old api client.py (#10645)

Fix qwen controlnet regression. (#10657)

Enable pinned memory by default on Nvidia. (#10656)

Removed the --fast pinned_memory flag.

You can use --disable-pinned-memory to disable it. Please report if it
causes any issues.

Pinned mem also seems to work on AMD. (#10658)

Remove environment variable.

Removed environment variable fallback for custom nodes directory.

Update documentation for custom nodes directory

Clarified documentation on custom nodes directory argument, removed documentation on environment variable

Clarify release cycle. (#10667)

Tell users they need to upload their logs in bug reports. (#10671)

mm: guard against double pin and unpin explicitly (#10672)

As commented, if you let cuda be the one to detect double pin/unpinning
it actually creates an asyc GPU error.

Only unpin tensor if it was pinned by ComfyUI (#10677)

Make ScaleROPE node work on Flux. (#10686)

Add logging for model unloading. (#10692)

Unload weights if vram usage goes up between runs. (#10690)

ops: Put weight cast on the offload stream (#10697)

This needs to be on the offload stream. This reproduced a black screen
with low resolution images on a slow bus when using FP8.

Update CI workflow to remove dead macOS runner. (#10704)

* Update CI workflow to remove dead macOS runner.

* revert

* revert

Don't pin tensor if not a torch.nn.parameter.Parameter (#10718)

Update README.md for Intel Arc GPU installation, remove IPEX (#10729)

IPEX is no longer needed for Intel Arc GPUs.  Removing instruction to setup ipex.

mm/mp: always unload re-used but modified models (#10724)

The partial unloader path in model re-use flow skips straight to the
actual unload without any check of the patching UUID. This means that
if you do an upscale flow with a model patch on an existing model, it
will not apply your patchings.

Fix by delaying the partial_unload until after the uuid checks. This
is done by making partial_unload a model of partial_load where extra_mem
is -ve.

qwen: reduce VRAM usage (#10725)

Clean up a bunch of stacked and no-longer-needed tensors on the QWEN
VRAM peak (currently FFN).

With this I go from OOMing at B=37x1328x1328 to being able to
succesfully run B=47 (RTX5090).

 Update Python 3.14 compatibility notes in README  (#10730)

Quantized Ops fixes (#10715)

* offload support, bug fixes, remove mixins

* add readme

add PR template for API-Nodes (#10736)

feat: add create_time dict to prompt field in /history and /queue (#10741)

flux: reduce VRAM usage (#10737)

Cleanup a bunch of stack tensors on Flux. This take me from B=19 to B=22
for 1600x1600 on RTX5090.

Better instructions for the portable. (#10743)

Use same code for chroma and flux blocks so that optimizations are shared. (#10746)

Fix custom nodes import error. (#10747)

This should fix the import errors but will break if the custom nodes actually try to use the class.

revert import reordering

revert imports pt 2

Add left padding support to tokenizers. (#10753)

chore(api-nodes): mark OpenAIDalle2 and OpenAIDalle3 nodes as deprecated (#10757)

Revert "chore(api-nodes): mark OpenAIDalle2 and OpenAIDalle3 nodes as deprecated (#10757)" (#10759)

This reverts commit 9a02382568.

Change ROCm nightly install command to 7.1 (#10764)
2025-11-17 06:16:21 +01:00

521 lines
16 KiB
Python

"""
ComfyUI X Rodin3D(Deemos) API Nodes
Rodin API docs: https://developer.hyper3d.ai/
"""
from inspect import cleandoc
import folder_paths as comfy_paths
import os
import logging
import math
from typing import Optional
from io import BytesIO
from typing_extensions import override
from PIL import Image
from comfy_api_nodes.apis.rodin_api import (
Rodin3DGenerateRequest,
Rodin3DGenerateResponse,
Rodin3DCheckStatusRequest,
Rodin3DCheckStatusResponse,
Rodin3DDownloadRequest,
Rodin3DDownloadResponse,
JobStatus,
)
from comfy_api_nodes.util import (
sync_op,
poll_op,
ApiEndpoint,
download_url_to_bytesio,
)
from comfy_api.latest import ComfyExtension, IO
COMMON_PARAMETERS = [
IO.Int.Input(
"Seed",
default=0,
min=0,
max=65535,
display_mode=IO.NumberDisplay.number,
optional=True,
),
IO.Combo.Input("Material_Type", options=["PBR", "Shaded"], default="PBR", optional=True),
IO.Combo.Input(
"Polygon_count",
options=["4K-Quad", "8K-Quad", "18K-Quad", "50K-Quad", "200K-Triangle"],
default="18K-Quad",
optional=True,
),
]
def get_quality_mode(poly_count):
polycount = poly_count.split("-")
poly = polycount[1]
count = polycount[0]
if poly == "Triangle":
mesh_mode = "Raw"
elif poly == "Quad":
mesh_mode = "Quad"
else:
mesh_mode = "Quad"
if count == "4K":
quality_override = 4000
elif count == "8K":
quality_override = 8000
elif count == "18K":
quality_override = 18000
elif count == "50K":
quality_override = 50000
elif count == "2K":
quality_override = 2000
elif count == "20K":
quality_override = 20000
elif count == "150K":
quality_override = 150000
elif count == "500K":
quality_override = 500000
else:
quality_override = 18000
return mesh_mode, quality_override
def tensor_to_filelike(tensor, max_pixels: int = 2048*2048):
"""
Converts a PyTorch tensor to a file-like object.
Args:
- tensor (torch.Tensor): A tensor representing an image of shape (H, W, C)
where C is the number of channels (3 for RGB), H is height, and W is width.
Returns:
- io.BytesIO: A file-like object containing the image data.
"""
array = tensor.cpu().numpy()
array = (array * 255).astype('uint8')
image = Image.fromarray(array, 'RGB')
original_width, original_height = image.size
original_pixels = original_width * original_height
if original_pixels > max_pixels:
scale = math.sqrt(max_pixels / original_pixels)
new_width = int(original_width * scale)
new_height = int(original_height * scale)
else:
new_width, new_height = original_width, original_height
if new_width != original_width or new_height != original_height:
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
img_byte_arr = BytesIO()
image.save(img_byte_arr, format='PNG') # PNG is used for lossless compression
img_byte_arr.seek(0)
return img_byte_arr
async def create_generate_task(
cls: type[IO.ComfyNode],
images=None,
seed=1,
material="PBR",
quality_override=18000,
tier="Regular",
mesh_mode="Quad",
ta_pose: bool = False,
):
if images is None:
raise Exception("Rodin 3D generate requires at least 1 image.")
if len(images) > 5:
raise Exception("Rodin 3D generate requires up to 5 image.")
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/rodin/api/v2/rodin", method="POST"),
response_model=Rodin3DGenerateResponse,
data=Rodin3DGenerateRequest(
seed=seed,
tier=tier,
material=material,
quality_override=quality_override,
mesh_mode=mesh_mode,
TAPose=ta_pose,
),
files=[
(
"images",
open(image, "rb") if isinstance(image, str) else tensor_to_filelike(image)
)
for image in images if image is not None
],
content_type="multipart/form-data",
)
if hasattr(response, "error"):
error_message = f"Rodin3D Create 3D generate Task Failed. Message: {response.message}, error: {response.error}"
logging.error(error_message)
raise Exception(error_message)
logging.info("[ Rodin3D API - Submit Jobs ] Submit Generate Task Success!")
subscription_key = response.jobs.subscription_key
task_uuid = response.uuid
logging.info("[ Rodin3D API - Submit Jobs ] UUID: %s", task_uuid)
return task_uuid, subscription_key
def check_rodin_status(response: Rodin3DCheckStatusResponse) -> str:
all_done = all(job.status == JobStatus.Done for job in response.jobs)
status_list = [str(job.status) for job in response.jobs]
logging.info("[ Rodin3D API - CheckStatus ] Generate Status: %s", status_list)
if any(job.status == JobStatus.Failed for job in response.jobs):
logging.error("[ Rodin3D API - CheckStatus ] Generate Failed: %s, Please try again.", status_list)
raise Exception("[ Rodin3D API ] Generate Failed, Please Try again.")
if all_done:
return "DONE"
return "Generating"
def extract_progress(response: Rodin3DCheckStatusResponse) -> Optional[int]:
if not response.jobs:
return None
completed_count = sum(1 for job in response.jobs if job.status == JobStatus.Done)
return int((completed_count / len(response.jobs)) * 100)
async def poll_for_task_status(subscription_key: str, cls: type[IO.ComfyNode]) -> Rodin3DCheckStatusResponse:
logging.info("[ Rodin3D API - CheckStatus ] Generate Start!")
return await poll_op(
cls,
ApiEndpoint(path="/proxy/rodin/api/v2/status", method="POST"),
response_model=Rodin3DCheckStatusResponse,
data=Rodin3DCheckStatusRequest(subscription_key=subscription_key),
status_extractor=check_rodin_status,
progress_extractor=extract_progress,
)
async def get_rodin_download_list(uuid: str, cls: type[IO.ComfyNode]) -> Rodin3DDownloadResponse:
logging.info("[ Rodin3D API - Downloading ] Generate Successfully!")
return await sync_op(
cls,
ApiEndpoint(path="/proxy/rodin/api/v2/download", method="POST"),
response_model=Rodin3DDownloadResponse,
data=Rodin3DDownloadRequest(task_uuid=uuid),
monitor_progress=False,
)
async def download_files(url_list, task_uuid: str):
result_folder_name = f"Rodin3D_{task_uuid}"
save_path = os.path.join(comfy_paths.get_output_directory(), result_folder_name)
os.makedirs(save_path, exist_ok=True)
model_file_path = None
for i in url_list.list:
file_path = os.path.join(save_path, i.name)
if file_path.endswith(".glb"):
model_file_path = os.path.join(result_folder_name, i.name)
await download_url_to_bytesio(i.url, file_path)
return model_file_path
class Rodin3D_Regular(IO.ComfyNode):
"""Generate 3D Assets using Rodin API"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="Rodin3D_Regular",
display_name="Rodin 3D Generate - Regular Generate",
category="api node/3d/Rodin",
description=cleandoc(cls.__doc__ or ""),
inputs=[
IO.Image.Input("Images"),
*COMMON_PARAMETERS,
],
outputs=[IO.String.Output(display_name="3D Model Path")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
Images,
Seed,
Material_Type,
Polygon_count,
) -> IO.NodeOutput:
tier = "Regular"
num_images = Images.shape[0]
m_images = []
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality_override = get_quality_mode(Polygon_count)
task_uuid, subscription_key = await create_generate_task(
cls,
images=m_images,
seed=Seed,
material=Material_Type,
quality_override=quality_override,
tier=tier,
mesh_mode=mesh_mode,
)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model)
class Rodin3D_Detail(IO.ComfyNode):
"""Generate 3D Assets using Rodin API"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="Rodin3D_Detail",
display_name="Rodin 3D Generate - Detail Generate",
category="api node/3d/Rodin",
description=cleandoc(cls.__doc__ or ""),
inputs=[
IO.Image.Input("Images"),
*COMMON_PARAMETERS,
],
outputs=[IO.String.Output(display_name="3D Model Path")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
Images,
Seed,
Material_Type,
Polygon_count,
) -> IO.NodeOutput:
tier = "Detail"
num_images = Images.shape[0]
m_images = []
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality_override = get_quality_mode(Polygon_count)
task_uuid, subscription_key = await create_generate_task(
cls,
images=m_images,
seed=Seed,
material=Material_Type,
quality_override=quality_override,
tier=tier,
mesh_mode=mesh_mode,
)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model)
class Rodin3D_Smooth(IO.ComfyNode):
"""Generate 3D Assets using Rodin API"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="Rodin3D_Smooth",
display_name="Rodin 3D Generate - Smooth Generate",
category="api node/3d/Rodin",
description=cleandoc(cls.__doc__ or ""),
inputs=[
IO.Image.Input("Images"),
*COMMON_PARAMETERS,
],
outputs=[IO.String.Output(display_name="3D Model Path")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
Images,
Seed,
Material_Type,
Polygon_count,
) -> IO.NodeOutput:
num_images = Images.shape[0]
m_images = []
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality_override = get_quality_mode(Polygon_count)
task_uuid, subscription_key = await create_generate_task(
cls,
images=m_images,
seed=Seed,
material=Material_Type,
quality_override=quality_override,
tier="Smooth",
mesh_mode=mesh_mode,
)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model)
class Rodin3D_Sketch(IO.ComfyNode):
"""Generate 3D Assets using Rodin API"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="Rodin3D_Sketch",
display_name="Rodin 3D Generate - Sketch Generate",
category="api node/3d/Rodin",
description=cleandoc(cls.__doc__ or ""),
inputs=[
IO.Image.Input("Images"),
IO.Int.Input(
"Seed",
default=0,
min=0,
max=65535,
display_mode=IO.NumberDisplay.number,
optional=True,
),
],
outputs=[IO.String.Output(display_name="3D Model Path")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
Images,
Seed,
) -> IO.NodeOutput:
num_images = Images.shape[0]
m_images = []
for i in range(num_images):
m_images.append(Images[i])
task_uuid, subscription_key = await create_generate_task(
cls,
images=m_images,
seed=Seed,
material="PBR",
quality_override=18000,
tier="Sketch",
mesh_mode="Quad",
)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model)
class Rodin3D_Gen2(IO.ComfyNode):
"""Generate 3D Assets using Rodin API"""
@classmethod
def define_schema(cls) -> IO.Schema:
return IO.Schema(
node_id="Rodin3D_Gen2",
display_name="Rodin 3D Generate - Gen-2 Generate",
category="api node/3d/Rodin",
description=cleandoc(cls.__doc__ or ""),
inputs=[
IO.Image.Input("Images"),
IO.Int.Input(
"Seed",
default=0,
min=0,
max=65535,
display_mode=IO.NumberDisplay.number,
optional=True,
),
IO.Combo.Input("Material_Type", options=["PBR", "Shaded"], default="PBR", optional=True),
IO.Combo.Input(
"Polygon_count",
options=["4K-Quad", "8K-Quad", "18K-Quad", "50K-Quad", "2K-Triangle", "20K-Triangle", "150K-Triangle", "500K-Triangle"],
default="500K-Triangle",
optional=True,
),
IO.Boolean.Input("TAPose", default=False),
],
outputs=[IO.String.Output(display_name="3D Model Path")],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
Images,
Seed,
Material_Type,
Polygon_count,
TAPose,
) -> IO.NodeOutput:
tier = "Gen-2"
num_images = Images.shape[0]
m_images = []
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality_override = get_quality_mode(Polygon_count)
task_uuid, subscription_key = await create_generate_task(
cls,
images=m_images,
seed=Seed,
material=Material_Type,
quality_override=quality_override,
tier=tier,
mesh_mode=mesh_mode,
ta_pose=TAPose,
)
await poll_for_task_status(subscription_key, cls)
download_list = await get_rodin_download_list(task_uuid, cls)
model = await download_files(download_list, task_uuid)
return IO.NodeOutput(model)
class Rodin3DExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
Rodin3D_Regular,
Rodin3D_Detail,
Rodin3D_Smooth,
Rodin3D_Sketch,
Rodin3D_Gen2,
]
async def comfy_entrypoint() -> Rodin3DExtension:
return Rodin3DExtension()